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1. Derivations for Categorical and Ordinal-Categorical Linear
Exponential Family

We derive the multivariate link functions for categorical and ordinal-categorical
variables and express their distributions as linear exponential families using the
multivariate links.
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1.1. Multivariate Logit link and Multivariate Expit function

For notation, refer to section 3 of the paper. The density and log-likelihood of
S are

f(S; p) ∝
( m∏
j=1

pS
j

j

)(
1− p1 − · · · − pm

)1−S1−···−Sm

,

`(θ;S) = θ(p)
>
S − log(1− 1

>
mp).

respectively, where

θ(p) = log

(
p

1− 1
>
mp

)
,

defines the canonical link, which is known as the Multivariate Logit link. The
inverse canonical link is

p = (Im + eθ1>m)−1eθ = eθ − eθ1>me
θ

1 + 1>me
θ

=
eθ

1 + 1>me
θ
,

where the second equality follows from the Woodbury formula. This inverse of
the multivariate logistic link is called the Multivariate Expit function.

1.2. Adjacent-Categories (Ad-Cat) Logit Link

Recall that the density of T , via the multinomial distribution of S, is

f(T ; p) ∝
m0∏
j=1

(pj)
Sj

= p1

(
p2

p1

)T 1

· · ·
(

pm0

pm0−1

)Tm0−1

,

since T 0 = 1, Tm0 = 0, and Sj = T j−1−T j . The log-likelihood for T 1, . . . , Tm

is then

`(p;T ) =

m∑
j=1

T j log

(
pj+1

pj

)
+ log(p1).

Letting θ(p) = (θ1(p), . . . , θm(p)), where, for j = 1, ...,m,

θj(p) = log

(
pj+1

pj

)
,

we rewrite the log-likelihood as `(p;T ) = θ(p)>T + log(p1). To derive the canon-
ical link, we need to determine the relation between θ and the mean of T . We
derive the mean of T and the covariance of T below.

For j = 1, . . . ,m, let γj = p1 + · · ·+ pj . Let γ0 = 0, γm0
= 1. Let τj = 1− γj

for j = 0, . . . ,m0. Let τ = (τ1, . . . , τm)>. Since T j = 1{Y > j}, we have

E(T j) = P (Y > j) = 1− γj = τj .



Quach and Li/Supplementary Material: On Forward Sufficient Dimension Reduction 3

Since, for j ≤ l, T jT l = T l, we have

E(T jT l) = E(T l) = 1− γl = τl.

Likewise, for j > l, we have E(T jT l) = E(T j) = τj . Hence

var(T j) = τj(1− τj), cov(T j , T l) = τmax{j,l}(1− τmin{j,l}).

Summarizing the above results in matrix form, we have

E(T ) = τ, var(T ) = Γ− ττ>, where Γ =


τ1 τ2 · · · τm−1 τm
τ2 τ2 · · · τm−1 τm
...

...
...

...
τm−1 τm−1 · · · τm−1 τm
τm τm · · · τm τm

 .

Now we can express θ1, . . . , θm as functions of τ as follows

θj = log

(
pj+1

pj

)
= log

(
γj+1 − γj
γj − γj−1

)
= log

(
τj − τj+1

τj−1 − τj

)
,

which is the canonical link, also known as the Ad-Cat link. Let

P =

(
0 1
Im 0

)
be the permutation matrix that maps (a1, ..., am) to (am, a1, ..., am−1). Then it
is easy to check that the Ad-Cat link can be written in matrix notation as

θ = θ(τ) = log{[diag{(P−1 − I)τ}]−1(P−1 − I)τ}.

We next compute the inverse canonical link mapping θ to τ . Note that, for
r = 1, . . . ,m,

r∑
s=1

θs = log

(
τr − τr+1

1− τr

)
. (S1)

Hinted by this, we define

φj(θ) =

j∑
r=1

r∏
s=1

exp (θs) =

j∑
r=1

exp

(
r∑
s=1

θs

)
, j = 1, . . . ,m. (S2)

Let φ(θ) = (φ1(θ), . . . , φm(θ))>, L the lower triangular matrix of 1’s (including
the diagonal). Then the above equations can be written in matrix form as φ(θ) =
L exp(Lθ). Meanwhile, by (S1) and (S2),

φ(θ) = L exp(Lθ) =
1

1− τ1
(τ1 − τ2, . . . , τ1 − τm, τ1)

>
.
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Permute φ(θ) by using P to obtain

Pφ(θ) =
1

1− τ1
(τ1, τ1 − τ2, . . . , τ1 − τm)

>
=

1

1− e>1 τ
Qτ,

where Q is a difference matrix given by

Q =


1 0 · · · 0
1 −1 · · · 0
...

...
...

...
1 0 · · · −1

 =


2 0 · · · 0
1 0 · · · 0
...

...
...

...
1 0 · · · 0

− Im = −Im + (1m + e1)e>1 .

Solving the equation Pφ(θ) = (1− e>1 τ)−1Qτ for τ gives us

τ(θ) = [−Im + {1m + e1 + Pφ(θ)}e>1 ]−1Pφ(θ).

By the Sherman-Woodbury formula, we have

[−Im + {1 + e1 + Pφ(θ)}e>1 ]−1 =− Im −
(−Im){1m + e1 + Pφ(θ)}e>1 (−Im)

1 + e>1 (−Im){1m + e1 + Pφ(θ)}

=− Im −
{1m + e1 + Pφ(θ)}e>1

1− e>1 {1m + e1 + Pφ(θ)}
.

Use the relation 1−e>1 {1m+e1 +Pφ(θ)} = −{1+e>1 Pφ(θ)}, to further simplify
the above as

τ(θ) =
−Pφ(θ) + 1me

>
1 Pφ(θ) + e1e

>
1 Pφ(θ)

1 + e>1 Pφ(θ)
=

QPL exp(Lθ)

1 + e>1 PL exp(Lθ)
.

This is the inverse Ad-Cat Logit link.
Also note that

log{1 + e>1 PL exp(Lθ)} = log

(
1 +

τ1
1− τ1

)
= − log(1− τ1) = − log(p1).

Hence, the log-likelihood of T has the following linear exponential family form

l(θ;T ) = θ>T − b(θ),

where b(θ) = log{1 + e>1PL exp(Lθ)}.

2. Newton-Raphson for Step 3 in Algorithm 3

In this section, we describe in detail the minimization in step 3 of Algorithm 3
in the paper. That is, the minimization of the negative local log-likelihood

`(a1, ..., an, C1, ..., Cn, β;Y1:n, X1:n) =

n∑
j=1

`j(aj , Cj , β;Y1:n, X1:n),
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over β for fixed a1, . . . , an, C1, . . . , Cn, where

`j(aj , Cj , β;Y1:n, X1:n) =

n∑
i=1

Wij(h)[{aj + C>j β
>(Xi −Xj)}>Yi

− b(aj + C>j β
>(Xi −Xj))].

Let βv = vec(β>) ∈ Rdp and Uij = (Xi −Xj)
> ⊗ C>j ∈ Rm×dp. Suppressing

the fixed variables from the notation, we express the negative log-likelihood,
score and information, as a function of βv, as

`(βv) = n−1
n∑
j=1

n∑
i=1

Wij(h){β>v U>ijYi − b(aj + Uijβv)},

S(βv) = n−1
n∑
j=1

n∑
i=1

Wij(h)U>ij {Yi −
∂

∂βv
b(aj + Uijβv)},

J(βv) = −n−1
n∑
j=1

n∑
i=1

−Wij(h)U>ij
∂b(aj + Uijβv)

∂βv∂β>v
Uij .

Given an initial estimate for βv, we iterate β̂
(r+1)
v = β̂

(r)
v + J−1(β̂

(r)
v )S(β̂

(r)
v )

until convergence according to some criteria. One option for the initial value of
β is to use the OPCG estimate, β̂opcg. We denote the converged iterate result

as β̂v and set β̂ = mat(β̂v)
>.

3. Unbiasedness and Exhaustiveness of OPCG

In this section, we prove a more general version of Proposition 4.1 in the paper.
Proposition 4.1 in the paper follows by taking t(X) below to be the canonical
parameter θ(X).

Proposition 4.1. Suppose X ∈ ΩX ⊆ Rp and Y ∈ ΩY ⊆ Rm satisfy Y ⊥⊥
E(Y |X)|β>X for β ∈ Rp×d. Let t : ΩX → ΩY be a differentiable function such
that t(X) = t̃(β>X). Then

(a) The columns of the gradient, ∂t(x)>/∂x ∈ Rp×m, belong to SE(Y |X).

(b) Let U = β>X. If the d× d matrix

A = E

{
∂t̃(U)>

∂u

∂t̃(U)

∂u>

}
is full rank, then

span

[
E

{
∂t(X)>

∂x

∂t(X)

∂x>

}]
= SE(Y |X).

(c) If U is supported on a convex set with a nonempty interior, then

span

[
E

{
∂t(X)>

∂x

∂t(X)

∂x>

}]
= SE(Y |X).
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Proof. For (a), we have, by the chain rule, ∂t(x)>/∂x = β∂t̃(u)>/∂u, where
∂t̃(u)>/∂u ∈ Rd×m. This implies

span

{
∂t(x)>

∂x

}
= span

{
β
∂t̃(u)>

∂u

}
⊆ span(β) = SE(Y |X).

Therefore, the columns of ∂t(x)>/∂x belong to SE(Y |X).
For (b), note that[

E

{
∂t(X)>

∂x

∂t(X)

∂x>

}]
= β

[
E

{
∂t̃(U)>

∂u

∂t̃(U)

∂u>

}]
β
>

= βAβ
>
.

Since A is full rank, we have

span

[
E

{
∂t(X)>

∂x

∂t(X)

∂x>

}]
= SE(Y |X).

For (c), let

Λ = E

(
∂t(X)>

∂x

∂t(X)

∂x>

)
∈ Rp×p.

We need to show span(Λ) = span(β). By the chain rule,

Λ = βE

(
∂t̃(U)>

∂u

∂t̃(U)

∂u>

)
β>,

implying span(Λ) ⊆ span(β). It remains to show span(Λ) is not a proper sub-
space SE(Y |X). Suppose span(Λ) ( span(β). Then ker(Λ) ) ker(β), so there
exists α 6= 0 ∈ Rp such that α /∈ ker(β) and α ∈ ker(Λ). Since α /∈ ker(β), we
get β>α 6= 0. Since α ∈ ker(Λ), the quadratic form α>Λα satisfies

0 = a>Λα = E

(
α>β

∂t̃(U)>

∂u

∂t̃(U)

∂u>
β>α

)
.

The non-negativity of the expression inside the expectation implies that it must
also be 0 almost everywhere. The quadratic expression then implies

0 =
∂t̃(u)

∂u>
β
>
α, (S3)

for all u ∈ supp(U), where β>α = γ 6= 0 ∈ Rd. Then we see that ∂t̃(u)
∂u>

γ = 0 for
all u ∈ supp(U).

Let u1, u2 ∈ supp(U) such that the segment is u2 − u1 is parallel to γ ∈ Rd,
which is possible because supp(U) contains an open ball. We take the derivative
of t̃(u) at any point along the line u2−u1, say at the point u0 = (1− ε)u1 + εu2

for some ε > 0. Then

∂t̃>((1− ε)u1 + εu2)

∂ε
= (u2 − u1)

>∂t̃
>((1− ε)u1 + εu2)

∂u
= 0 ∈ Rm,

where the last equality follows from (S3). This implies that t(x) does not change
in the direction of γ. This contradicts SE(Y |X) being a minimal dimension
reduction space, since SE(Y |X)	 span(γ) is then an even smaller SDR subspace
for E(Y |X).
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4. Preliminaries and Assumptions for theoretical developments

In this section, we provide some preliminaries and assumptions needed for the
theoretical developments in the next few sections. We present the developments
for general, strictly convex loss functions instead of the negative log-likelihood.
This is because the negative log-likelihood for a linear exponential family can be
associated with a strictly convex deviance loss criteria. In the developments that
follow, we can always take strictly convex loss function as being the deviance
function ρ(θ, y) = −`(θ; y) + `(θ0; y), where θ0 is the unique minimizer of the
negative log-likelihood. Then our results in this section will be directly applicable
to our results in the paper.

4.1. Preliminaries

For theoretical purpose it is much easier to work under a more general framework
than the setting of multivariate GNM. We first set up this general problem. Let
(X,Y ) be a pair of random vectors taking values in ΩX × ΩY , where ΩX ⊆ Rp
and ΩY ⊆ Rm. Let Θ ⊆ Rm be the parameter space. Let ρ : ΩY ×Θ→ R be a
loss function, and let R0(θ, x) = E[ρ(Y, θ)|X = x] be the conditional risk. Let

θ(x) = argmin
x∈ΩX

R0(θ, x).

Then OPCG and MADE amount to estimating the gradient function ∂θ>(x)/∂x.
Due to the nonparametric nature of this problem, it is impossible to set an
objective function with finite-dimensional argument. So, we instead set up an
objective function with a tuning parameter hn, hoping that, as hn → 0, the
minimizer of the objective function converges to ∂θ>(x)/∂x.

To achieve this goal, we construct the following population- and sample-level
objective functions. For a ∈ Rm, B ∈ Rp×m, and hn > 0, let

R(hn, a, B, x) = E{K(h−1
n (X − x))ρ(Y, a+B

>
(X − x))}.

Let (X1, Y1), . . . , (Xn, Yn) be an i.i.d. sample from (X,Y ). Our sample-level loss
function is

R̂(hn, a, B, x) = En{K(h−1
n (X − x))ρ(Y, a+B

>
(X − x))}.

For analytic and algorithmic convenience we reexpress the parameter (a,B)
in a vectorized form. We also need to have a convenient notation to multiply B
by a constant in (a,B). For these purposes we introduce the following functions:
for u ∈ Rp and h ∈ R, a ∈ Rm and B ∈ Rp×m, let

ν(u) =

(
1
u

)
⊗ Im, D(h) =

(
1 0
0 hIp

)
⊗ Im, wec(a,B) =

(
a

vec(B>)

)
.
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The notation wec is inspired by the fact that the letter w looks like two v’s,
indicating we are vectorizing two objects together: one vector and one matrix.
Also note that there is a transpose in vec(B>). In this notational system,

a+B
>
(X − x) = ν(X − x)

>
wec(a,B), ν(hu) = D(h)ν(u) =

(
1
hu

)
⊗ Im.

Letting c = wec(a,B), we can reexpress R(hn, a, B, x) and R̂(hn, a, B, x) as

E{K(h−1
n (X − x))ρ(Y, ν(X − x)

>
c)}, En{K(h−1

n (X − x))ρ(Y, ν(X − x)
>
c)}.

With a slight abuse of notation, we still use R(hn, c, x) and R̂(hn, c, x) to de-
note the above two functions. We will abbreviate hn as h if doing so causes no
ambiguity. Let

c0(x) = wec(θ(x), ∂θ
>
(x)/∂x), c(h, x) = argmin

c∈Rm(p+1)

R(h, c, x),

ĉ(h, x) = argmin
c∈Rm(p+1)

R̂(h,c, x).

We will use a to denote the first m components of c, and b the (m+1)th through
(m+mp)th components of c. This applies to c0(x), c(h, x), and ĉ(h, x) as well.

We need a systematic notation to denote vectors, matrices, or multi-dimensional
arrays of derivatives. For a vector-valued function of three variables, say f(h, c, x),
we use ∂1f(h, c, x) and ∂2f(h, c, x) to denote the derivatives with respect to the
first and second argument of f . When c is itself a function of h, x, we use ∂h to
denote the derivative with respect to h. Specifically,

∂1f(h, c, x) =∂f(h, c, x)/∂h,

∂2f(h, c, x) =∂f(h, c, x)/∂c
>
,

∂hf(h, c(h, x), x) =∂1f(h, c(h, x), x) + ∂2f(h, c(h, x), x)ċ(h, x),

where ċ(h, x) is the derivative of c(h, x) with respect to h. For a function f :
Rp×Rm → R, the notation ∂2

1f(x, y) and ∂2
2f(x, y) denote the second-derivative

matrices with respect to the first and second argument, respectively. For exam-
ple, ∂2

1f(x, y) is the matrix ∂2f(x, y)/∂x∂x>. For a function g : Rm × Rm →
Rm, the notations ∂2

1g(y, θ) and ∂2
2g(y, θ) are 3-dimensioal arrays: for example,

∂2
2g(y, θ) is the 3-dimensional array consisting of matrices A1, . . . , Am, where
Ai = ∂2gi(y, θ)/∂θ∂θ

>, gi being the ith entry of the m-dimensional vector g.
Furthermore, if α is an m-dimensional vector, then

α
>
∂2

2g(y, θ)α = (α
>
A1α, . . . , α

>
Amα)

>
.

We will show uniform consistency of the estimates ĉ(x) over x ∈ ΩX ,

sup
x∈ΩX

‖ĉ(h, x)− c0(x)‖ a.s−→ 0 as n→∞.
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We will also derive the uniform convergence rate for the estimate ĉ(x). To com-
pute the convergence rate, we upper bound the supremum above by a stochas-
tic/variance component and a deterministic/bias component:

sup
x∈ΩX

‖ĉ(h,x)− c0(x)‖ ≤ sup
x∈ΩX

‖ĉ(h,x)− c(h, x)‖︸ ︷︷ ︸
variance/stochastic

+ sup
x∈ΩX

‖c(h, x)− c0(x)‖︸ ︷︷ ︸
bias/deterministic

.

4.2. Assumptions

We replace Assumptions 3, 4 and 5 in the paper with a set of general assumptions
about a strictly convex loss function ρ(y, θ). We do so because the negative log-
likelihood for a linear exponential family is a special case of a strictly convex
deviance loss criteria, and the latter is easier to work with.

Assumption 3′. The parameter θ is identifiable and the loss function ρ(y, θ)
is strictly convex in θ, twice continuously differentiable in θ and has a unique
minimum. If g(y, θ) = ∂ρ(y, θ)/∂θ, then there exist s1 > 2 and s2 > 2 such
that ‖g(y, θ)‖ ≤ M1(y) with E[M1(Y )s1 ] < ∞ and ‖∂2g(y, θ)‖ ≤ M2(y) with
E[M2(Y )s2 ] <∞.

Assumption 4′. For each x ∈ ΩX , R0(θ, x) has a unique minimum θ(x) over
Θ, where θ(x) is continuously differentiable. The parameter spaces Θ ⊆ Rm is
compact and convex.

Assumption 5′. Derivatives and integrals in

∂

∂θ

∫ ∫
ρ(y, θ)f(x, y)dydx and

∂

∂x

∫
g(y, θ)f(y|x)dy.

are interchangeable.

5. Proofs of Fisher Consistency

In this section we prove the Fisher consistency and convergence rate of c(h, x)
to c0(x). This is the bias part of the asymptotic development: there is no
randomness involved. Recall that c(h, x) is the solution in c of the equation
∂2R(h, c, x) = 0. Let S(h, c, x) = D(h)−1∂2R(h, c, x). Since D(h) is nonsingular
for h ∈ (0, 1), c(h, x) is also the solution to the equation S(h, c, x) = 0. The mo-
tivation of changing ∂2R(h, c, x) to S(h, c, x) is to clear away any proportionality
constant that depends on h. By computation, the specific form S(h, c, x) is

S(h, c, x) =

∫
ΩX×ΩY

K(u)ν(u)g(y, ν(hu)
>
c)f(x+ hu, y)dudy. (S4)

The following lemma gives an expression for ∂θ(x)/∂x>, which corresponds to
the last mp entries of c0(x), which we show in Lemma S.5.2.
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Lemma S.5.1. Under Assumptions 2, 3′, 4′, 5′ we have

∂θ(x)

∂x>
= −

{
E

[
∂g(y, θ(x))

∂θ>

∣∣∣∣x]}−1

E

[
g(y, θ(x))

∂ log f(y|x)

∂x>

∣∣∣∣x] ,
where g(y, θ) = ∂ρ(y, θ)/∂θ.

Proof. Since R0(θ, x) has unique a minimizer at θ(x), taking derivatives of the
conditional risk gives

0 = ∂R0(θ(x), x)/∂θ = E[∂ρ(y, θ(x))/∂θ|X = x] = E[g(y, θ(x))|X = x].

Since the above holds for all x, taking the derivative with respect to x will again
yield 0:

0 =
∂

∂x>
E[g(y, θ(x))|X = x]

=
∂

∂x>

∫
g(y, θ(x))f(y|x)dy

=

∫
∂

∂x>
g(y, θ(x))f(y|x)dy

=

∫
∂g(y, θ(x))

∂θ>
∂θ(x)

∂x>
f(y|x)dy +

∫
g(y, θ(x))

∂f(y|x)

∂x>
1

f(y|x)
f(y|x)dy

= E

{
∂g(y, θ(x))

∂θ>

∣∣∣∣x}∂θ(x)

∂x>
+ E

{
g(y, θ(x))

∂ log f(y|x)

∂x>

∣∣∣∣x}.
Solving for ∂θ(x)/∂x> yields the desired result.

In the following, for a function f(h) of h, we use f(0+) to denote limh↓0 f(h).
The next lemma provides an expression for c0(x) and the derivative of the first
m entries of c(h, x) evaluated at 0+.

Lemma S.5.2. If Assumptions 2, 3′, 4′, 5′, 6 hold, then, for each x ∈ ΩX ,

a(0+, x) = θ(x), ȧ(0+, x) = 0, b(0+, x) = vec{∂θ(x)/∂x
>}.

Note that another way to write the first and third relation is c(0+, x) = c0(x).

Proof. Since S(h, c(h, x), x) = 0 for all h > 0, we have, by (S4),

S(0+, c(0+, x), x) =

∫
ΩX×ΩY

K(u)ν(u)g(y, ν(0)
>
c(0+, x))f(x, y)dudy = 0.

(S5)

By the definition of ν, and Assumption 6 on K(u), we have

ν(0)
>
c(0+, x) = a(0+, x),

∫
ΩX

K(u)ν(u)du =

(
1
0

)
⊗ Im. (S6)
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Also note that
∫

ΩY
g(y, a(0+, x)f(x, y)dy = f(x)E[g(Y, a(0+, x))|x], where f(x)

is the density of X evaluated at x. Hence (S5) can be rewritten as(
0

f(x)E[g(Y, a(0+, x)|x)]

)
= 0.

Since θ(x) is the unique solution to E[g(Y, a(0+, x)|x)] = 0, we have a(0+, x) =
θ(x).

Next, differentiating the equation S(h, c(h, x), x) = 0 with respect to h, we
have

∂1S(h, c(h, x), x) + ∂2S(h, c(h, x), x)ċ(h, x) = 0. (S7)

By computation, the first term on the left-hand side of (S7) is

∂1S(h, c(h, x), x) = A(h, c(h, x), x) +B(h, c(h, x), x),

where

A(h, c(h, x), x) =

∫
K(u)ν(u)∂2g{y, ν(hu)

>
c(h, x)}{(0, u>)⊗ Im}c(h, x)

× f(x+ hu, y)dudy

B(h, c(h, x), x) =

∫
K(u)ν(u)g{y, ν(hu)

>
c(h, x)}∂1f(x+ hu, y)

>
ududy,

Taking the limit h ↓ 0 for A(h, c(h, x), x), we have

A(0+, c(0+, x), x) =

(
0m×1

f(x)E[∂2g(Y, θ(x))|x]b(0+, x)

)
,

where we have used [(0, u>) ⊗ Im]c(0+, x) = b(0+, x),
∫
K(u)uu>du = Ip, and

the relation (S6). By a similar computation,

B(0+, c(0+, x), x) =

(
0m×1∫

ΩY
∂1f(x, y)⊗ g(y, θ(x))dy

)
,

where we have used the relations ν(0)>c(0+, x) = a(0+, x) = θ(x),
∫
K(u)udu =

0, and
∫
K(u)uu>du = Ip. By

∂1f(x, y) = ḟ(x)f(y|x) + f(x)[∂f(y|x)/∂x)],

and ∫
ΩY

ḟ(x)f(y|x)⊗ g(y, θ(x))dy = ḟ(x)⊗
∫

ΩY

f(y|x)g(y, θ(x))dy = 0,

we have

B(0+, c(0+, x), x) =

(
0m×1

f(x)
∫

ΩY
[∂f(x, y)/∂x]⊗ g(y, θ(x))dy

)
.
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The second term on the left-hand side of (S7) is∫
ΩX×ΩY

K(u)ν(u)∂2g{y, ν(hu)
>
c(h, x)}ν(hu)

>
ċ(h, x)f(x+ hu, y)dudy,

which, upon taking the limit h ↓ 0, becomes

∂2S(0+, c(0+, x), x)ċ(0+, x) =

∫
K(u)ν(u)∂2g{y, θ(x)}ν(0)

>
ċ(0+, x)f(x, y)dudy

=

∫
K(u)ν(u)∂2g{y, θ(x)}ȧ(0+, x)f(x, y)dudy

=

(
E[∂2g{Y, θ(x)}|x]f(x)ȧ(0+, x)

0mp×m

)
.

To summarize the results for A(0+, x(0+, x), x) and B(0+, c(0+, x), x), from
the above and the equation (S7), we have the following equations

E[∂2g{Y, θ(x)}|x]ȧ(0+, x) = 0,

f(x)E[∂2g{Y, θ(x)}|x]b(0+, x) + f(x)

∫
ΩY

[∂f(x, y)/∂x]⊗ g{y, θ(x)}dy = 0.

The first equation gives us the second relation in Lemma S.5.2, and the second
equation, combined with Lemma S.5.1 and the fact uv>= v⊗ u for any vectors
u, v, implies the second relation in Lemma S.5.2.

We now use this lemma to prove Theorem 4.1 and Theorem 4.2 in the paper.
We first restate them here for reference.

Theorem 4.1. If Assumptions 2, 3′, 4′, 5′, 6, 7 are satisfied, then, as h ↓ 0,

sup
x∈ΩX

‖a(h, x)− θ(x)‖ = O(h2), sup
x∈ΩX

‖B(h, x)− ∂θ(x)
>
/∂x‖ = O(h). (S8)

Proof. By Taylor expansion about c0(x),

0 = S(h, c(h, x), x) =S(h, c0(x), x) + ∂2S(h, c†, x)D(h−1)D(h)[c(h, x)− c0(x)],

where c† is a vector between the line joining c(h, x) and c(0+, x). Hence

‖D(h)[c(h, x)− c0(x)]‖
≤ sup
h∈[0,1],x∈ΩX ,c∈A

‖{∂2S(h, c†, x)D(h−1)}−1‖ sup
x∈ΩX

‖S(h, c0(x), x)‖. (S9)

Note that ∂2S(h, c†, x)D(h−1) is exactly the integral in part 2 of Assumption 7.
Hence

sup
h∈[0,1],x∈ΩX ,c∈A

‖{∂2S(h, c†, x)D(h−1)}−1‖ <∞. (S10)
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By Taylor expanding S(h, c0(x), x) about h0 > 0 and then letting h0 ↓ 0,

S(h, c0(x), x) = S(0+, c0(x), x) + ∂1S(0+, c0(x), x)h+ 1
2∂

2
1S(h†, c0(x), x)h2,

where h† is a point between 0 and h. The term S(0+, c0(x), x) is 0 because
S(h, c(h, x), x) = 0 for all h > 0. Also, differentiating the equation S(h, c(h, x), x) =
0 with respect to h, we have

∂1S(0+, c0(x), x) + ∂2S(0+, c0(x), x)ċ0(x) = 0.

As we have already seen in the proof of Lemma S.5.2, the first term on the
left is a vector whose first m entries are 0, and the second term is a vector
whose last mp entries are 0. Hence the above equation implies first term is 0,
i.e. ∂1S(0+, c0(x), x) = 0, and consequently,

S(h, c0(x), x) = 1
2∂

2
1S(h†, c0(x), x)h2.

Then

sup
x∈ΩX

‖S(h, c0(x), x)‖ ≤ 1
2 suph∈(0,1),c∈A,x∈ΩX

‖∂2
1S(h, c, x)‖h2. (S11)

By straightforward computation,

∂2
1S(h, c, x) = I1(h, c, x) + I2(h, c, x) + I3(h, c, x) + I4(h, c, x),

where I1(h, c, x), I2(h, c, x), I3(h, c, x) and I4(h, c, x) are as defined in part 3 of
Assumption 7. By part 3 of Assumption 7, then

sup
h∈(0,1),c∈A,x∈ΩX

‖∂2
1S(h, c, x)‖ <∞.

Hence, by (S11),

sup
x∈ΩX

‖S(h, c0(x), x)‖ = O(h2). (S12)

Combining (S9), (S10), and (S12), we have ‖D(h)(c(h, x)− c0(x))‖ = O(h2), or
equivalently

‖a(h, x)− θ(x)‖ = O(h2), h‖b(h, x)− vec{∂θ(x)/∂x
>}‖ = O(h2).

These are equivalent to (S8), since B(h, x) = mat{b(h, x)}>, ‖ · ‖F = ‖vec(·)‖,
and operator norm is upper bounded by Frobenius norm, where mat(·) maps a
vector to a matrix by filling the columns of the matrix from left to right with
the consecutive elements in the vector. This completes the proof.

Let B(h, x) = mat{b(h, x)}>∈ Rp×m. We use the uniform Fisher consistency
above to show that the candidate matrices, and their corresponding eigenvectors,
are also Fisher consistent. Statement (b) of the theorem below corresponds to
Theorem 4.2 in the paper.



Quach and Li/Supplementary Material: On Forward Sufficient Dimension Reduction 14

Theorem 4.2. If Assumptions 2, 3′, 4′, 5′, 6, 7 hold, then, for h ∈ [0, 1], and as
h ↓ 0,

(a) Then Λ(h) = E{B(h,X)B(h,X)>} is Fisher consistent for

Λ = E

{
∂θ(X)>

∂x

∂θ(X)

∂x>

}
,

and ‖Λ(h)− Λ‖ = O(h).

(b) Let η(h), η be matrices with columns comprised of the first d eigenvectors of
Λ(h),Λ respectively. Then

m(η(h), η) = ‖η(h)η(h)
>− ηη>‖ = O(h).

Proof. For (a), we have

‖Λ(h)− Λ‖ =

∥∥∥∥E{B(h,X)B(h,X)
>− ∂θ(X)>

∂x

∂θ(X)

∂x>

}∥∥∥∥
≤E
{∥∥∥∥B(h,X)B(h,X)

>− ∂θ(X)>

∂x

∂θ(X)

∂x>

∥∥∥∥},
where the last inequality follows from Jensen’s Inequality. Note that we can
re-arrange the difference as

B(h,X)B(h,X)
>− ∂θ(X)>

∂x

∂θ(X)

∂x>

=

{
B(h,X)− ∂θ(X)>

∂x

}{
B(h,X)

>− ∂θ(X)>

∂x

}>
+

{
B(h,X)− ∂θ(X)>

∂x

}
∂θ(X)

∂x>

+
∂θ(X)>

∂x

{
B(h,X)− ∂θ(X)>

∂x

}
.

Then Theorem 4.1, smoothness of θ(·), and compactness of ΩX give us

E

{∥∥∥∥B(h,X)B(h,X)
>− ∂θ(X)>

∂x

∂θ(X)

∂x>

∥∥∥∥}
≤
[

sup
x∈ΩX

∥∥∥∥B(h, x)− ∂θ(x)>

∂x

∥∥∥∥]2

+ 2 sup
x∈ΩX

∥∥∥∥B(h, x)− ∂θ(x)>

∂x

∥∥∥∥× sup
x∈ΩX

∥∥∥∥∂θ(x)

∂x>

∥∥∥∥
≤O(h2 + h) = O(h),

which completes the proof for (a).
For (b), note that ‖ · ‖F ≤

√
p‖ · ‖, so ‖Λ(h)− Λ‖F ≤

√
p‖Λ(h)− Λ‖ = O(h).

By Lemma S.8.3(b) of [1], we obtain the final result

‖η(h)η(h)
>− ηη>‖ ≤

d∑
k=1

‖ηk(h)ηk(h)
>− ηkη>k‖ ≤

d∑
k=1

‖ηk(h)ηk(h)
>− ηkη>k‖F

= O(h),

where ηk(h) and ηk are the kth columns of η(h) and η, respectively, completing
the proof.
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6. Proofs for Consistency of OPCG

In this section, we develop the uniform convergence rate of supx∈ΩX
‖ĉ(h, x)−

c(h, x)‖. Recall that ĉ(h, x) is the solution in c of the equation ∂2R̂(h, c, x). By
the same motivation for the definition of (S4), we define

Ŝ(h, c, x) =h−pD(h)−1∂2R̂(h, c, x),

=h−pD(h)−1En{K[(X − x)/h]ν(X − x)g(Y, ν(X − x)
>
c)}.

Then ĉ(h, x) is also a solution in c of the equation Ŝ(h, c, x) = 0. Next, we make
the following assumption.

Assumption 9. Let Z = (X,Y ) and

(i) mn(c, x;Z) = hK[(X − x)/h]ν[(X − x)/h]g(Y, ν(X − x)>c),

(ii) mn(c, x;Z) = h2K[(X − x)/h]ν[(X − x)/h]∂g(Y, ν(X − x)>c)/∂θ> .

Suppose each of the above functions satisfy:

(a) For some c1, c2 > 0,

‖mn(c, x, Z)−mn(c, x′, Z)‖ ≤ ‖x− x′‖c1nc2L1(Z),

with E|L1(Z)| <∞, and where ‖ · ‖ is the Euclidean norm,

(b) For some c3, c4 > 0,

‖mn(c, x, Z)−mn(c′, x, Z)‖ ≤ ‖c− c′‖c3nc4L2(Z),

with E|L2(Z)| < ∞, where ‖ · ‖ is the operator norm when applied to a
matrix (left) and the Euclidean norm when applied to a vector (right).

The following lemma shows that the negative log-likelihood of a linear ex-
ponential family that we use in the paper, i.e. ρ(y, θ) = −θ>y + b(θ), satisfies
Assumption 9.

Lemma S.6.1. Suppose Assumptions 2, 3′, 4′, 5′, 6, 7, 8 hold and let ρ(y, θ) =
−θ>y + b(θ). Then Assumption 9 holds.

Proof. Since g(y, θ) = −y + b(θ), the two functions in Assumption 9 are

(i) mn(c, x;Z) = hK[(X − x)/h]ν[(X − x)/h]{−Y + ∂b(ν(X − x)>c)/∂θ},

(ii) mn(c, x;Z) = h2K[(X−x)/h]ν[(X−x)/h]{∂2b(ν(X−x)>c)/∂θ∂θ>}ν[(X−
x)/h]> .

We first check that (i) satisfies (a) and (b) of Assumption 9. For (a), we can
assume that h is chosen sufficiently small so that x and x′ are in a convex subset
of ΩX , and apply the mean value theorem by appealing to the smoothness of g,
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K and ν. This gives us

‖mn(c, x;Z)−mn(c, x′;Z)‖
≤‖∂mn(c, x‡;Z)/∂x

>‖‖x− x′‖
≤h‖D(h−1)‖‖∂[K[(X − x‡)/h]vec{ν(X − x‡)[−Y + b(ν(X − x‡)>c)]}]/∂x>‖
× ‖x− x′‖

≤‖K[(X − x‡)/h]∂[vec{ν(X − x‡)[−Y + b(ν(X − x‡)>c)]}]/∂x>‖‖x− x′‖
+ ‖h−1{∂K[(X − x‡)/h]/∂u}vec{ν(X − x‡)[−Y + b(ν(X − x‡)>c)]}‖‖x− x′‖

≤nαCg(Y )‖x− x′‖,

where x‡ lies between x and x′. The term Cg(Y ) in the last inequality follows
from smoothness of the compactness of ΩX and Θc, and the nα term follows
from n ≥ 1, so we can take c1 = 1 and c2 = α.

For (b), we again appeal to the smoothness of g and convexity of Θc, so that
we can apply mean value theorem to get:

‖mn(c, x;Z)−mn(c′, x;Z)‖
≤‖∂mn(c†, x;Z)/∂c

>‖‖c− c′‖
≤CKC2

Xh‖D(h)‖‖∂2b([ν(X − x)]
>
c†)/∂θ∂θ

>‖‖c− c′‖
≤nc2CKC2

XCb,1‖c− c′‖

where c† lies between c and c′, c2 can be arbitrary, c1 = 1. The bounds follow
from our smoothness and compactness assumptions. This completes the proof
for function (i).

Next, we check that (ii) satisfies (a) and (b) in Assumption 9 as well. Again,
throughout this part of the proof, ‖ · ‖ is the operator norm when applied to a
matrix and Euclidean norm when applied to a vector. We rely on the fact that
the operator norm is bounded by the Frobenius norm, ‖ · ‖F, which gives us

‖mn(c, x;Z)‖ ≤ ‖mn(c, x;Z)‖F = ‖vec[mn(c, x;Z)]‖,

where ‖ · ‖ refers to operator norm for matrices and euclidean norm for vectors.
For (a), we assume that h is chosen sufficiently small so that x and x′ are in a
convex subset of ΩX , and apply the mean value theorem by appealing to the
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smoothness of g, K and ν. This gives us

‖mn(c, x;Z)−mn(c, x′;Z)‖
≤‖vec[mn(c, x;Z)]− vec[mn(c, x′;Z)]‖
≤‖∂vec[mn(c, x‡;Z)]/∂x

>‖‖x− x′‖
≤h2‖D(h−1)‖2‖∂{K[(X − x‡)/h]vec[ν(X − x‡)
× ∂2b(ν(X − x‡)>c)/∂θ∂θ>ν(X − x‡)>]}/∂x>‖‖x− x′‖

≤‖h−1{∂K[(X − x‡)/h]/∂u}vec[ν(X − x‡)[∂2b(ν(X − x‡)>c)/∂θ∂θ>]ν(X − x‡)>]‖
× ‖x− x′‖
+ ‖K[(X − x‡)/h]∂{vec[ν(X − x‡)[∂2b(ν(X − x‡)>c)/∂θ∂θ>]ν(X − x‡)>]}/∂x>‖
× ‖x− x′‖

≤nαCg,2‖x− x′‖,

where x‡ lies between x and x′, and the bound, Cg,2, follow from our smoothness
and compactness assumptions. Then (a) is satisfied with c1 = 1 and c2 = α.

For (b), by the smoothness of g and the convexity of Θc, we can apply mean
value theorem to get:

‖mn(c, x;Z)−mn(c′, x;Z)‖ ≤‖vec[mn(c, x;Z)]− vec[mn(c′, x;Z)]‖
≤‖∂vec[mn(c†, x;Z)]/∂c

>‖‖c− c′‖
≤h2‖D(h−1)‖2K[(X − x)/h]‖ν(X − x)⊗ ν(X − x)‖
× ‖∂vec[∂2b([ν(X − x)]

>
c†)/∂θ∂θ

>
]/∂c

>‖‖c− c′‖
≤CKC2

XCb,2‖c− c′‖,

where c† lies between c and c′, so (b) holds with c1 = 1 and c2 being arbitrary
since n ≥ 1. This completes the proof for function (ii), and completes the proof
of the lemma.

We need the following proposition that shows our choice of bandwidth in
Assumption 8 satisfies the second condition of Lemma S.8.1.

Proposition S.6.1. Let an = hp+k, where h satisfies Assumption 8 and 0 ≤
k ≤ 4. Then, for s > 2, we have an ↓ 0 and

a
s/(s−2)
n n

log n
→∞, as n→∞.

Proof. By Assumption 8, h = cn−α for α > 0, and so an ↓ 0 as n → ∞. To
compute the limit, note that

a
s/(s−2)
n n

log n
=

[(cn−α)p+k]s/(s−2)n

log n
=
c(p+k)s/(s−2)n−α(p+k)s/(s−2)n

log n

∝ n−α(p+k)s/(s−2)+1

log n
.
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For s > 2, 0 < α ≤ 1/p0, and p0 > (p+ 4)s/(s− 2), we get for 0 ≤ k ≤ 4,

1 > 1− α (p+ k)s

(s− 2)
≥ 1− (p+ k)s

p0(s− 2)
> 0,

and so n−α(p+k)s/(s−2)+1/ log n is monotonically diverging in n, completing the
proof.

In particular, Proposition S.6.1 implies that hp+2 and hp+4 will satisfy con-
dition 2 of Lemma S.8.1. The following lemma gives the uniform convergence of
Ŝ(h, c, x) and ∂2Ŝ(h, c, x)D(h)−1.

Lemma S.6.2. Suppose Assumptions 2, 3′, 4′, 5′ and 6 ∼ 9 hold. Then,

(a) supx∈ΩX ,c∈Θc
‖Ŝ(h, c, x)− S(h, c, x)‖ = Oas(δph),

(b) supx∈ΩX ,c∈Θc
‖∂2Ŝ(h, c, x)D(h)−1 − ∂2S(h, c, x)D(h)−1‖ = Oas(δph) .

Proof. (a). We apply Lemma S.8.1 with Z = (X,Y ) and

mn(c, x;Z) =hK[(X − x)/h]D(h)−1ν(X − x)g(Y, ν(X − x)
>
c),

so that Ŝ(h, c, x) = h−(p+1)Enmn(c, x;Z). We now check the three conditons in
Lemma S.8.1.

For condition (i), we have ‖g(y, θ)‖ ≤ M1(y), by smoothness of g and com-
pactness of Θ. Furthermore, E{M1(Y )s1} <∞ for some s1 > 2 by Assumption
3′. Therefore,

‖mn(c, x;Z)‖ ≤hK[(X − x)/h]‖D(h)−1‖‖ν[(X − x)]‖‖g(Y, ν(X − x)
>
c)‖

≤CKCXM1(Y ),

where CK and CX bounds the kernel and ‖ν(X−x)‖ respectively, and ‖D(h)−1‖ =
h−1 since h ∈ (0, 1). Since the bounds are free of θ and x, taking the supremum
implies condition (i).

For condition (ii) of Lemma S.8.1, we have

σ2
1 =|E[mn(c, x;Z)

>
mn(c, x;Z)]|

=|Eh2K[(X − x)/h]2g(Y, ν(X − x)
>
c)
>
ν[(X − x)/h]

>
ν[(X − x)/h]

× g(Y, ν(X − x)
>
c)|

≤CKhp+2

∫
K(u)

∣∣∣∣g(y, ν(hu)
>
c)
>
ν(u)

>
ν(u)g(y, ν(hu)

>
c)

∣∣∣∣f(x+ hu, y)dudy

≤CKhp+2 sup
c∈Θc,h∈[0,1],x∈ΩX

∫
K(u)

∣∣∣∣g(y, ν(hu)
>
c)
>
ν(u)

>
ν(u)g(y, ν(hu)

>
c)

∣∣∣∣
× f(x+ hu, y)dudy

≤O(hp+2),
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where the boundedness follows from part (4) of Assumption 7. Similarly,

σ2
2 =|E[mn(c, x;Z)mn(c, x;Z)

>
]|

≤‖Eh2K[(X − x)/h]2ν[(X − x)/h]g(Y, ν(X − x)
>
c)g(Y, ν(X − x)

>
c)
>

× ν[(X − x)/h]
>‖

≤CKhp+2

∫
K(u)

∥∥∥∥ν(u)g(y, ν(hu)
>
c)g(y, ν(hu)

>
c)
>
ν(u)

>

∥∥∥∥f(x+ huy)dudy

≤CKhp+2 sup
c∈Θc,h∈[0,1],x∈ΩX

∫
K(u)

∥∥∥∥ν(u)g(y, ν(hu)
>
c)g(y, ν(hu)

>
c)
>
ν(u)

>

∥∥∥∥
× f(x+ hu, y)dudy

≤O(hp+2).

Hence, σ2 = max{σ2
1 , σ

2
2} = Oas(h

p+2). The second part of condition (ii) re-
garding an = hp+2 holds by Proposition S.6.1. Condition (iii) follows directly
from Assumption 9.

Then, by Lemma S.8.1 and Corollary S.8.2, we have

sup
x∈ΩX ,c∈Θc

‖Enmn(c, x;Z)− Emn(c, x;Z)‖ = hp+2Oas(δ(p+2)h).

Since δ(p+2)h = h−1δph, we have hp+2δ(p+2)h = hp+1δph. Plugging Enmn(c, x;Z) =

hp+1Ŝ(h, c, x) and Emn(c, x;Z) = hp+1S(h, c, x) into the supremum above, we
have

sup
x∈ΩX ,c∈Θc

‖Ŝ(h, c, x)− S(h, c, x)‖ = Oas(δph),

which completes the proof of (a).
(b). We apply Lemma S.8.1 with Z = (X,Y ) and

mn(c, x;Z) =h2K[(X − x)/h]ν[(X − x)/h]∂2g(Y, ν(X − x)
>
c)ν[(X − x)/h]

>
,

so that ∂2Ŝ(h, c, x)D(h)−1 = h−(p+2)Enmn(c, x;Z). We now check the three
conditions in Lemma S.8.1.

For condition (i), ‖∂2g(Y, θ)‖ = M2(y), where E[M2(Y )s2 ] < ∞ for some
s2 > 2 by Assumption 3′. Therefore,

‖mn(c, x;Z)‖ ≤h2K[(X − x)/h]‖ν[(X − x)]‖2‖D(h)−1‖2‖∂2g(Y, ν(X − x)
>
c)‖

≤CKC2
XM2(Y ),

where CK and CX bounds the kernel and ‖ν(X − x)‖ respectively, and the
operator norm of ‖D(h)−1‖2 is just h−2 since h ∈ (0, 1). Since the bounds are
free of θ and x, taking supremum implies condition (i).
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For condition (ii), since mn(c, x;Z) is a symmetric matrix, we just need to
compute σ2

1 = σ2
2 = σ2. We have

σ2 =‖E[mn(c, x;Z)
>
mn(c, x;Z)]‖

≤‖Eh4K[(X − x)/h]2ν[(X − x)/h]∂2g(Y, ν(X − x)
>
c)ν[(X − x)/h]

>

× ν[(X − x)/h]∂2g(Y, ν(X − x)
>
c)ν[(X − x)/h]

>‖

≤CKhp+4

∫
K(u)

∥∥∥∥ν(u)∂2g(y, ν(hu)
>
c)ν(u)

>
ν(u)∂2g(y, ν(hu)

>
c)ν(u)

>

∥∥∥∥
× f(x+ huy)dudy

≤CKhp+4 sup
c∈Θc,h∈[0,1],x∈ΩX

∫
K(u)

∥∥∥∥ν(u)∂2g(y, ν(hu)
>
c)ν(u)

>

× ν(u)∂2g(y, ν(hu)
>
c)ν(u)

>

∥∥∥∥f(x+ hu, y)dudy

=O(hp+4),

where the second last inequality follows from part (4) of Assumption 7. The
second part of condition (ii) regarding an = hp+4 holds by Proposition S.6.1.
Condition (iii) follows directly from Assumption 9.

Then, by Lemma S.8.1 and Corollary S.8.2, have

sup
x∈ΩX ,c∈Θc

‖Enmn(c, x;Z)− Emn(c, x;Z)‖ = hp+4Oas(δ(p+4)h).

Since δ(p+4)h = h−2δph, we have hp+4δ(p+4)h = hp+2δph. Plugging

Enmn(c, x;Z) = hp+2∂2Ŝ(h, c, x)D(h)−1

and Emn(c, x;Z) = hp+2∂2S(h, c, x)D(h)−1 into the supremum above, we have

sup
x∈ΩX ,c∈Θc

‖∂2Ŝ(h, c, x)D(h)−1 − ∂2S(h, c, x)D(h)−1‖ = Oas(δph),

which completes the proof of (b).

The next lemma and corollary gives the uniform convergence of
{∂2Ŝ(h, c, x)D(h)−1}−1.

Lemma S.6.3. Let η ∈ E, where E is compact and ‖ · ‖F denote the Frobenius
norm. Suppose a sequence of random invertible matrices {Ân(η) : n = 1, 2, . . .}
and deterministic invertible matrices {An(η) : n = 1, 2, . . .} satisfy

sup
η∈E
‖Ân(η)−An(η)‖F = Oas(dn),

where dn → 0 as n→∞. If supη∈E ‖An(η)−1‖F = O(1), then

sup
η∈E
‖Ân(η)−1 −An(η)−1‖F = Oas(dn).
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Proof. Since supη∈E ‖Ân(η)−An(η)‖F = Oas(dn), we have that Ân(η) = An(η)+
Dn, where Dn = Oas(dn), which is meant entry-wise. Then,

Ân(η)−1 =[An(η) +Dn]−1 = An(η)−1 +An(η)−1Dn[An(η) +Dn]−1,

since, for matrices A andD with A invertible, we always have (A+D)−1 = A−1+
A−1D(A+D)−1. Because dn → 0, we have supη∈E ‖[An(η) +Dn]−1‖F = O(1)
and supη∈E ‖An(η)−1‖F = O(1). This gives us

sup
η∈E
‖Ân(η)−1 −An(η)−1‖F

≤ sup
η∈E
‖An(η)−1‖F × ‖Dn‖F × sup

η∈E
‖[An(η) +Dn]−1‖F

=Oas(dn),

completing the proof.

Corollary S.6.1. Suppose Assumptions 2, 3′, 4′, 5′ and 6 ∼ 9 hold. Then,

sup
x∈ΩX ,c∈Θc

‖{∂2Ŝ(h, c, x)D(h)−1}−1 − {∂2S(h, c, x)D(h)−1}−1‖F = Oas(δph).

Proof. We need to verify the conditions in Lemma S.6.3. By Lemma S.6.2, we
have

sup
x∈ΩX ,c∈Θc

‖∂2Ŝ(h, c, x)D(h)−1 − ∂2S(h, c, x)D(h)−1‖F = Oas(δph),

where δph → 0. We also have supx∈ΩX ,c∈Θc
‖{∂2S(h, c, x)D(h)−1}−1‖F = O(1)

by part (4) of Assumption 7. Then, by Lemma S.6.3, we get

sup
x∈ΩX ,c∈Θc

‖{∂2Ŝ(h, c, x)D(h)−1}−1 − {∂2S(h, c, x)D(h)−1}−1‖F = Oas(δph),

completing the proof.

The following theorem serves as a precursor to Theorem 5.1.

Theorem S.6.1. Suppose Assumptions 2, 3′, 4′, 5′ and 6 ∼ 9 hold. Then, as
n→∞, we have

sup
x∈ΩX

‖â(h, x)− a(h, x)‖ = Oas(δph), sup
x∈ΩX

‖B̂(h, x)−B(h, x)‖ = Oas(h
−1δph).

Proof. A Taylor expansion of Ŝ(h, ĉ(h, x), x) in c about c(h, x) gives us

0 = Ŝ(h, ĉ(h, x), x) = Ŝ(h, c(h, x), x) + ∂2Ŝ(h, c†, x)[ĉ(h, x)− c(h, x)],

where ‖c†− c(h, x)‖ ≤ ‖ĉ(h, x)− c(h, x)‖. Solving for D(h)[ĉ(h, x)− c(h, x)], we
have

D(h)[ĉ(h, x)− c(h, x)] =− {∂2Ŝ(h, c†, x)D(h)−1}−1Ŝ(h, c(h, x), x).
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Taking norm on both sides and observing that E(Ŝ(h, c(h, x), x)) = S(h, c(h, x), x) =
0, we can upper bound the RHS as follows, where ‖ · ‖ refers to operator norm
for matrices and Euclidean otherwise:

‖D(h)[ĉ(h, x)− c(h, x)]‖
≤ sup
c∈Θc

‖{∂2Ŝ(h, c, x)D(h)−1}−1‖ sup
c∈Θc

‖Ŝ(h, c, x)− S(h, c, x)‖.

where

T1 = sup
x∈ΩX ,c∈Θc

‖{∂2Ŝ(h, c, x)D(h)−1}−1 − {∂2S(h, c, x)D(h)−1}−1‖

T2 = sup
x∈ΩX ,c∈Θc

‖Ŝ(h, c, x)− S(h, c, x)‖

T3 = sup
x∈ΩX ,c∈Θc

‖{∂2S(h, c, x)D(h)−1}−1‖.

By part 4 of Assumption 7,

T3 ≤ sup
h∈[0,1],c∈A,x∈ΩX

∥∥∥∥{∫ K(u)ν(u)∂2g(y, ν(hu)
>
c)ν(u)

>
f(x+ hu, y)dydu

}−1∥∥∥∥
<∞.

Lemma S.6.2 and Corollary S.6.1 imply T1 = Oas(δph) and T3 = Oas(δph).
Plugging in these rates, we get

sup
x∈ΩX

‖D(h)[ĉ(h, x)− c(h, x)]‖ =Oas(δph)Oas(δph) +O(1)Oas(δph) = Oas(δph).

Hence the norm of the first m entries of D(h){ĉ(h, x)− c(h, x)} satisfy

sup
x∈ΩX

‖â(h, x)− a(h, x)‖ = Oas(δph),

and the norm of off the last mp entries of D(h){ĉ(h, x)− c(h, x)} satisfy

sup
x∈ΩX

‖hb̂(x)− b(h, x)‖ = Oas(δph) =⇒ sup
x∈ΩX

‖b̂(x)− b(h, x)‖ = Oas(h
−1δph).

Because ‖ · ‖F = ‖vec(·)‖ and the operator norm is upper bounded by the
Frobenius norm, we have the desired result.

Let B̂(x) = mat(b̂(x))> ∈ Rp×m, where mat(·) maps a vector to a matrix by
filling the m columns of the matrix from left to right with the p consecutive ele-
ments in the vector. This operation depends on the dimension p of the columns,
but we omit this dependence from the notation as it is usually obvious from the
context. We can now prove Theorem 5.1 as a direct consequence of Theorem
S.6.1.
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Theorem 5.1. Suppose Assumptions 2, 3′, 4′, 5′ and 6 ∼ 8 hold. Then, as n→
∞, we have

sup
x∈ΩX

‖â(h, x)− θ(x)‖ = Oas(h
2 + δph),

sup
x∈ΩX

‖B̂(x)− ∂θ(x)
>
/∂x‖F = Oas(h+ h−1δph).

Proof. Combine the result from Theorem S.6.1 with Theorem 4.1 to obtain

sup
x∈ΩX

‖â(h, x)− θ(x)‖ ≤ sup
x∈ΩX

‖â(h, x)− a(h, x)‖+ sup
x∈ΩX

‖a(h, x)− θ(x)‖

=Oas(h
2 + δph),

and

sup
x∈ΩX

‖B̂(h, x)− ∂θ(x)
>
/∂x‖

≤ sup
x∈ΩX

‖B̂(x)−B(h, x)‖+ sup
x∈ΩX

‖B(h, x)− ∂θ(x)/∂x
>‖

=Oas(h+ h−1δph).

Let B(x) denote the true gradients ∂θ(x)>/∂x. Since b̂(x) is uniformly consis-
tent for vec(∂θ(x)/∂x>), B̂(h, x) is uniformly consistent for B(x). The candidate
matrix for OPCG is given by Λ̂n = n−1

∑n
j=1 B̂(Xj)B̂(Xj)

>. The next theorem
is an augmented version of Theorem 5.2 in the paper (the latter corresponds to
part (b) of the theorem below; to avoid confusion).

Theorem 5.2. Suppose Assumptions 2, 3′, 4′, 5′ and 6 ∼ 8 hold, and let δph =
(log n/hpn)1/2.

(a) Then Λ̂n = n−1
∑n
j=1 B̂(Xj)B̂(Xj)

> consistently estimates Λ = E{B(x)B(x)>},
and

‖Λ̂n − Λ‖ =Oas(h+ h−1δph),

(b) Let η̂, η ∈ Rp×d be matrices with columns comprised of the first d eigenvec-
tors of Λ̂n,Λ respectively. Then

m(η̂, η) = ‖η̂η̂>− ηη>‖ = Oas

(
h+ h−1δph

)
.

Proof. (a). By the triangle inequality, we have

‖Λ̂n − Λ‖ =

∥∥∥∥n−1
n∑
j=1

B̂(Xj)B̂(Xj)
>− EB(X)B(X)

>

∥∥∥∥
≤n−1

n∑
j=1

‖B̂(Xj)B̂(Xj)
>−B(Xj)B(Xj)

>‖

+ ‖En{B(X)B(X)
>− EB(X)B(X)

>}‖.
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We use the uniform consistency in Theorem S.6.1 to bound the first term above
as follows:

‖B̂(Xj)B̂(Xj)
>−B(Xj)B(Xj)

>‖
≤‖{B̂(Xj)−B(Xj)}{B̂(Xj)−B(Xj)}>‖+ ‖{B̂(Xj)−B(Xj)}B(Xj)

>‖
+ ‖B(Xj){B̂(Xj)−B(Xj)}>‖

≤
(

sup
x∈ΩX

‖B̂(x)−B(x)‖
)2

+ 2 sup
x∈ΩX

‖B(x)‖ sup
x∈ΩX

‖B̂(x)−B(x)‖

= Oas[{(h+ h−1δph)}2] +Oas(h+ h−1δph)

= Oas(h+ h−1δph).

Using Lemma S.8.2 to bound the second term gives

‖En{B(X)B(X)
>− EB(X)B(X)

>}‖ = Oas(
√

log n/n).

Hence

‖Λ̂n − Λ‖ = Oas(h+ h−1δph +
√

log n/n).

Since h−1δph =
√

log n/(hp+2n), for h ∈ (0, 1), h−1δph is larger than
√

log n/n,

so we drop
√

log n/n, completing the proof for (a).
(b). Since ‖ · ‖F ≤

√
p‖ · ‖, we have ‖Λ(h)−Λ‖F ≤

√
p‖Λ(h)−Λ‖ = Oas(h+

h−1δph). By Lemma S.8.3(b), due to [1], we get the final result

‖η̂η̂>− ηη>‖ ≤
d∑
k=1

‖η̂kη̂>k − ηkη
>
k‖ ≤

d∑
k=1

‖η̂kη̂>k − ηkη
>
k‖F = O(h+ h−1δph),

where η̂k and ηk are the kth columns of η̂ and η, respectively. This proves (b).

7. Plots for Simulations and Applications

In this section, we provide some additional plots to supplement the results re-
ported in the paper: specifically, the predictor augmentation plots used for es-
timating the dimension d of the central mean subspace SE(Y |X), the five-fold
k-means tuning plots for determining the bandwidth, and some plots of the suf-
ficient predictors constructed from test sets. Figure S1 contains the F-ratio plots
for our supervised k-means tuning procedure with different numbers of clusters
per class. Figure S2 plots the prediction augmentation variation [2] against the
dimension d of the central mean subspace. Figure S3 shows classes in the first
two sufficient predictors by six different SDR methods. The central subspace is
estimated using the training set; the plots are based on the test sets. Figures
S1, S2, S3 are the visual support of the results in Table 1 of the paper.

For our applications, Figure S4 provides the predictor augmentation plots
for pendigit and USPS in; Figure S5 provides the F-ratios for tuning pendigit,
USPS, and ISOLET; Figure S6 shows the F-ratio for tuning the wine quality
data; Figure S7 shows the sufficient predictors constructed on the test set for
the wine quality data set.
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Fig S1. F-ratios for our supervised k-means tuning procedure in simulations. The plots on
top are 5-fold supervised k-means on the training set, and the plots on bottom are supervised
k-means on a validation set. From left to right, the number of clusters per class is set to
1, 2, 3.

Fig S2. The estimated dimension of SE(Y |X) for our simulations. The Predictor Augmen-

tation plot estimates d̂ = 2.
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Fig S3. Sufficient Predictors on the test set in simulations. Red is class 1; blue is 2; and
green is 3.

(a) pendigit (b) USPS

Fig S4. From left to right: Predictor Augmentation plot for pendigit and USPS.

8. Background Theorems and Lemmas

In this section, we provide some preliminary theorems and lemmas used in
previous sections. Some of these results are known, and we provide their proofs
here for completeness.

8.1. Uniform Consistency for the mean with a parameter and index

The following lemma and proof is adapted from [5, 6].

Lemma S.8.1. Suppose mn(η, Z) ∈ Rd1×d2 , n = 1, 2 . . . , are matrix-valued
functions, where Z is a random vector, and η is a parameter that ranges over
a compact set E ⊂ Rd. Suppose {Zi : i = 1, 2, · · · } is a sequence of i.i.d. copies



Quach and Li/Supplementary Material: On Forward Sufficient Dimension Reduction 27

(a) pendigit (b) USPS (c) ISOLET

Fig S5. F-ratio from supervised k-means for tuning the bandwidth.

Fig S6. Wine Quality. F-ratio from five-fold supervised k-means for tuning the bandwidth.

Fig S7. Wine Quality. From Left to Right: Sufficient predictors constructed on the test set
using OPCG, OPG, and SIR. Red is category {3, 4, 5}, blue is category {6}, and green is
category {7, 8}.

of Z. Suppose mn satisfy the following conditions, where ‖ · ‖ denotes operator
norm when referring to matrices and Euclidean norm when referring to vectors:

(i) (Uniform Boundedness) Suppose

sup
η∈E
‖mn(η, Z)‖ ≤M(Z),
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with E{Ms(Z)} <∞ for some s > 2;

(ii) (Uniformly rates of Second Moments) Let

σ2
1 = sup

η∈E
‖E[mn(η, Z)

>
mn(η, Z)]‖, σ2

2 = sup
η∈E
‖E[mn(η, Z)mn(η, Z)

>
]‖.

We assume σ2 = max(σ2
1 , σ

2
2) < an, where an → 0, and

lim inf
n

a
s/(s−2)
n n

log n
= lim inf

n
a2/(s−2)
n

ann

log n
> 0

(iii) (Lipschitz in η) For all η, η′ ∈ E,

‖mn(η, Z)−mn(η′, Z)‖ ≤ ‖η − η′‖c1nc2L(Z),

for some c1, c2 > 0, and L(Z) ≥ 0 with EL(Z) <∞.

Then,

sup
η∈E

∥∥∥∥Enmn(η, Z)− Emn(η, Z)

∥∥∥∥ = Oas

(√
an log n

n

)
.

Proof. Since E is compact, it can be covered by N balls of radius r centered at
η1, . . . , ηN . By the triangle inequality,

sup
η∈E

∥∥∥∥n−1
n∑
i=1

[mn(η, Zi)− Emn(η, Zi)]

∥∥∥∥
≤ sup
η∈∪kBr(ηk)

∥∥∥∥n−1
n∑
i=1

[mn(η, Zi)− Emn(η, Zi)]

∥∥∥∥
≤ max
k=1,...,N

∥∥∥∥n−1
n∑
i=1

[
mn(ηk, Zi)− Emn(ηk, Zi)

]∥∥∥∥
+ max

k
sup

η∈Br(ηk)

∥∥∥∥n−1
n∑
i=1

[
[mn(η, Zi)−mn(ηk, Zi)]− E[mn(η, Zi)−mn(ηk, Zi)]

]∥∥∥∥
= max
k=1,...,N

Rn,k,1 + max
k=1,...,N

sup
η∈Br(ηk)

Rn,k,2 (S13)

The strategy from this point is to use truncation and Bernstein’s inequality to
determine the rate of the first term in (S13), and use the Lipschitz property to
control the second term in (S13).

First Term of (S13) . Define the following truncations of the random func-
tion mn(ηk, Z):

m(O)
n (ηk, Z) = mn(ηk, Z)1{|M(Z)| ≥ Cn},

m(I)
n (ηk, Z) = mn(ηk, Z)1{|M(Z)| < Cn},

ξk,i = m(I)
n (ηk, Zi)− Em(I)

n (ηk, Zi),
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for some constant Cn > 0, which will be made explicit later. This gives us

max
k=1,...,N

∥∥∥∥n−1
n∑
i=1

mn(ηk, Zi)− Emn(ηk, Zi)

∥∥∥∥
≤ max
k=1,...,N

∥∥∥∥n−1
n∑
i=1

m(O)
n (ηk, Zi)− Em(O)

n (ηk, Zi)

∥∥∥∥+ max
k=1,...,N

∥∥∥∥n−1
n∑
i=1

ξk,i

∥∥∥∥
≤max

k

∥∥∥∥n−1
n∑
i=1

m(O)
n (ηk, Zi)

∥∥∥∥+ max
k

∥∥∥∥n−1
n∑
i=1

Em(O)
n (ηk, Zi)

∥∥∥∥+ max
k

∥∥∥∥n−1
n∑
i=1

ξk,i

∥∥∥∥
(S14)

For the last term in (S14), we have |ξk,i| ≤ 2Cn, Eξk,i = 0, and

‖E(ξ
>
k,iξk,i)‖ =

∥∥∥∥E{[mn(ηk, Z)1{|M(Z)| < Cn} − E(mn(ηk, Z)1{|M(Z)| < Cn})
]>

×
[
mn(ηk, Z)1{|M(Z)| < Cn} − E(mn(ηk, Z)1{|M(Z)| < Cn})

]}∥∥∥∥
≤
∥∥∥∥E{[mn(ηk, Z)− E(mn(ηk, Z))

]>[
mn(ηk, Z)− E(mn(ηk, Z))

]}∥∥∥∥
≤‖E{mn(ηk, Z)

>
mn(ηk, Z)}‖ < σ2

1

‖E(ξk,iξ
>
k,i)‖ =

∥∥∥∥E{[mn(ηk, Z)1{|M(Z)| < Cn} − E(mn(ηk, Z)1{|M(Z)| < Cn})
]

×
[
mn(ηk, Z)1{|M(Z)| < Cn} − E(mn(ηk, Z)1{|M(Z)| < Cn})

]>}∥∥∥∥
≤
∥∥∥∥E{[mn(ηk, Z)− E(mn(ηk, Z))

][
mn(ηk, Z)− E(mn(ηk, Z))

]>}∥∥∥∥
≤‖E{mn(ηk, Z)mn(ηk, Z)

>}‖ < σ2
2 , .

Hence, by condition (ii),

σ2
ξk

= max

{∥∥∥∥ n∑
i=1

E(ξ
>
k,iξk,i)

∥∥∥∥,∥∥∥∥ n∑
i=1

E(ξk,iξ
>
k,i)

∥∥∥∥} < nσ2 < nan.

By Bernstein’s inequality for matrices [4, 3], for any εn > 0,

P

(∥∥∥∥n−1
n∑
i=1

ξk,i

∥∥∥∥ > εn

)
≤P
(∥∥∥∥ n∑

i=1

ξk,i

∥∥∥∥ > nεn

)

≤2(d1 + d2) exp

{
− n2ε2

n

2σ2
ξk

+ (2/3)2Cnnεn

}

≤2(d1 + d2) exp

{
− nε2

n

2an + (2/3)2Cnεn

}
,
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where the last inequality is independent of k and i.
Therefore,

∞∑
n=1

P

(
max
k

∥∥∥∥n−1
n∑
i=1

ξk,i

∥∥∥∥ > εn

)
=

∞∑
n=1

P

( N⋃
k=1

{
n−1

n∑
i=1

‖ξk,i‖ > εn

})

≤
∞∑
n=1

N∑
k=1

P

(
n−1

n∑
i=1

‖ξk,i‖ > εn

)

≤
∞∑
n=1

N max
k

P

(
n−1

n∑
i=1

‖ξk,i‖ > εn

)

≤ 2(d1 + d2)

∞∑
n=1

N exp

{
− nε2

n

2an + (4/3)Cnεn

}
.

In particular, if we select εn and Cn such that Cnεn � an, and nε2
n � an log n,

say Cnεn = b1an and nε2
n = b2an log n for b1, b2 > 0, then we have εn �

(an log n/n)1/2, Cn � (ann/ log n)1/2, and

2(d1 + d2)

∞∑
n=1

N exp

{
− nε2

n

2an + (4/3)Cnεn

}
=2(d1 + d2)

∞∑
n=1

N exp

{
− b2

2 + 4
3b1

log n

}

≤2(d1 + d2)

∞∑
n=1

Nn
− b2

2+ 4
3
b1 .

As we will see later, we will need N to increase with n with rate

N(n) � ndc2/c1(an log n/n)−d/(2c1)

for constants c1, c2 > 0. So, if we choose b1, b2 > 0 large enough so that

N(n)n
− b2

2+ 4
3
b1 ≺ n−c,

for some c > 1, then

∞∑
n=1

P

(
max
k

∥∥∥∥n−1
m∑
i=1

ξk,i

∥∥∥∥ > b
1/2
2 (an log n/n)1/2

)
<∞.

By the first Borel-Cantelli Lemma,

P

({
ω : max

k

∥∥∥∥n−1
n∑
i=1

ξk,i(ω)

∥∥∥∥ > b
1/2
2 (an log n/n)1/2

}
i.o.

)
= 0,

or equivalently,

max
k

∥∥∥∥n−1
∑
i

ξk,i

∥∥∥∥ = Oas((an log n/n)1/2).
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For the second term of (S14), we have

‖Em(O)
n (ηk, Zi)‖ ≤E‖m(O)

n (ηk, Zi)‖
=E[‖mn(ηk, Zi)‖1{|M(Zi)| ≥ Cn}]
≤E[|M(Zi)|1{|M(Zi)| ≥ Cn}]
=C−(s−1)

n E|M(Zi)|Cs−1
n 1{|M(Zi)| ≥ Cn}

≤C−(s−1)
n E|M(Zi)|s1{|M(Zi)| ≥ Cn}

≤C1−s
n E|M(Zi)|s,

where E|M(Zi)|s <∞ for s > 2 by condition (ii). This implies

max
k

∥∥∥∥n−1
∑
i

Em(O)
n (ηk, Zi)

∥∥∥∥ ≤ n−1
∑
i

C1−s
n E|M(Z)|s = C1−s

n E|M(Z)|s.

So we need to show C1−s
n = O(εn). But since Cn � (ann/ log n)1/2, we have

C1−s
n

εn
=

(ann/ log n)(1−s)/2

(an log n/n)1/2
=

[
(ann/ log n)(1−s)

(an log n/n)

]1/2

.

The RHS without the square root is

a
(1−s)
n n(1−s)/(logn)(1−s)

an logn/n
=

a
(1−s)
n nn(1−s)

an logn(logn)(1−s)
= a−s

n

(
n

logn

)2−s

=

[
a
−s/(2−s)
n n

logn

]2−s

=

[
a
s/(s−2)
n n

logn

]2−s

.

Since s > 2, and lim infn
as/(s−2)
n n

logn > 0 by condition (ii), the RHS is bounded

above. Therefore, C1−s
n = O(εn), and consequently,

max
k

∥∥∥∥n−1
n∑
i=1

Em(O)
n (ηk, Zi)

∥∥∥∥ = O((an log n/n)1/2).

For the first term in (S14), we have∥∥∥∥n−1
n∑
i=1

m(O)
n (ηk, Zi)

∥∥∥∥ ≤n−1
n∑
i=1

‖mn(ηk, Zi)‖1{|M(Zi)| ≥ Cn}

≤C1−s
n n−1

n∑
i=1

|M(Zi)|s1{|M(Zi)| ≥ Cn}

≤C1−s
n n−1

n∑
i=1

|M(Zi)|s.

Taking the maximum over k gives us

max
k

n−1

∥∥∥∥∑
i

m(O)
n (ηk, Zi)

∥∥∥∥ ≤ C1−s
n n−1

n∑
i=1

|M(Zi)|s = Oas((an log n/n)1/2),
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where the last inequality follows from the strong law of large numbers.
Second Term of (S13). By condition (ii), for any k = 1, . . . , N and any

η ∈ Br(ηk), we have∥∥∥∥n−1
n∑
i=1

{
[mn(η, Zi)−mn(ηk, Zi)]− E[mn(η, Zi)−mn(ηk, Zi)]

}∥∥∥∥
≤ n−1

n∑
i=1

∥∥∥∥mn(η, Zi)−mn(ηk, Zi)

∥∥∥∥+ n−1
n∑
i=1

E

∥∥∥∥mn(η, Zi)−mn(ηk, Zi)

∥∥∥∥
≤ n−1

n∑
i=1

|L(Zi)| × ‖η − ηk‖c1nc2 + n−1
n∑
i=1

E|L(Zi)| × ‖η − ηk‖c1nc2

≤ rc1nc2n−1
n∑
i=1

|L(Zi)|+ rc1nc2E|L(Z)|.

Hence

max
k=1,...,N

sup
η∈Br(ηk)

Rn,k,2 ≤ rc1nc2
[
n−1

n∑
i=1

|L(Zi)|+ E|L(Z)|
]
,

where the strong law ensures the sum converges almost surely to E|L(Z)|.
So we just need to pick r so that rc1nc2 � (an log n/n)1/2, which gives r =
n−c2/c1(an log n/n)1/(2c1) . With r thus determined, the number of balls needed
to cover E satisfies N(n)rd � V , V being the true volume of E. Hence

N(n) � ndc2/c1(an log n/n)−d/(2c1),

which we used earlier. Putting together all the results, we conclude that

sup
η∈E

∥∥∥∥n−1
n∑
i=1

[mn(η, Zi)− Emn(η, Zi)]

∥∥∥∥ ≤ max
k=1,...,N

Rn,k,1 + max
k

sup
η∈Br(ηk)

Rn,k,2

=Oas((an log n/n)1/2),

completing the proof.

The next Corollary shows the Lipschitz condition in Lemma S.8.1 can be
replaced by a component-wise Lipschitz condition.

Corollary S.8.1. Let η = (θ, x) ∈ E = Θ×ΩX . Then condition (iii) in Lemma
(S.8.1) can be replaced by the following conditions

(i) (Lipschitz for x ∈ ΩX) For all x, x′ ∈ ΩX and θ ∈ Θ,

‖mn(θ, x, Z)−mn(θ, x′, Z)‖ ≤ ‖x− x′‖c1nc2L1(Z),

for some c1, c2 > 0, with EL1(Z) <∞;
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(ii) (Lipschitz for θ ∈ Θ) For all θ, θ′ ∈ Θ and x ∈ ΩX ,

‖mn(θ, x, Z)−mn(θ′, x, Z)‖ ≤ ‖θ − θ′‖c
′
1nc

′
2L2(Z),

for some c′1, c
′
2 > 0, with EL2(Z) <∞ .

Proof. We just need to show that the two conditions are sufficient for bounding
the second term in (S13). By the triangle inequality,

Rn,k,2 ≤
∥∥∥∥n−1

n∑
i=1

{
[mn(η, Zi)−mn(ηk, Zi)]− E[mn(η, Zi)−mn(ηk, Zi)]

}∥∥∥∥
≤ n−1

n∑
i=1

‖mn(η, Zi)−mn(ηk, Zi)‖+ n−1
n∑
i=1

E‖mn(η, Zi)−mn(ηk, Zi)‖.

By Lipschitz in θ and x, we get

‖mn(η, Zi)−mn(ηk, Zi)‖
=‖mn(θ, x, Zi)−mn(θk, xk, Zi)‖
≤‖mn(θ, x, Zi)−mn(θk, x, Zi)‖+ ‖mn(θk, x, Zi)−mn(θk, xk, Zi)‖

+ ‖mn(θk, xk, Zi)−mn(θ, xk, Zi)‖+ ‖mn(θ, xk, Zi)−mn(θk, xk, Zi)‖

≤‖θ − θk‖c
′
1nc

′
2L2(Z) + ‖x− xk‖c1nc2L1(Z) + ‖θ − θk‖c

′
1nc

′
2L2(Z)

+ ‖x− xk‖c1nc2L1(Z)

≤2rc
′
1nc

′
2L2(Z) + 2rc1nc2L1(Z),

where the last inequality follows from ‖η− ηk‖ ≤ r, which implies ‖x− xk‖ ≤ r
and ‖θ − θk‖ ≤ r. So

max
k=1,...,N

sup
η∈Br(ηk)

Rn,k,2 ≤2rc
′
1nc

′
2

[
n−1

n∑
i=1

L2(Zi) + E|L2(Z)|
]

+ 2rc1nc2
[
n−1

n∑
i=1

L1(Zi) + EL1(Z)

]
.

The strong law of large numbers ensures the averages converge almost surely
finite constants. So we need to pick r such that rc1nc2 � εn and rc

′
1nc

′
2 � εn.

Without loss of generality, assume rc
′
1nc

′
2 ≤ rc1nc2 . Then

max
k=1,...,N

sup
η∈Br(ηk)

Rn,k,2

≤2rc1nc2
[
n−1

n∑
i=1

|L2(Zi)|+ E|L2(Z)|+ n−1
n∑
i=1

|L1(Zi)|+ E|L1(Z)|
]
.

We then set r � n−c2/c1(an log n/n)1/(2c1) and N � ndc2/c1(an log n/n)−d/(2c1)

, as we did originally in the Lemma, where V is the volume of E. This completes
the proof.
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The next corollary provides a convergence rate that is uniform in one com-
ponent of η, but pointwise in the other.

Corollary S.8.2. Let η = (θ, x) ∈ E = Θ × ΩX and replace condition (iii) in
Lemma S.8.1 with condition (ii) in Corollary S.8.1. Then

sup
θ∈Θ

∥∥∥∥Enmn(θ, x, Z)− Emn(θ, x, Z)

∥∥∥∥ = Oas

(√
an log n

n

)
.

Proof. Let m̃n(θ, Z) = mn(θ, x, Z). Applying Lemma S.8.1 to m̃n gives us the
result.

8.2. Convergence Rates for Sums of Bounded Outer Products

Lemma S.8.2. Suppose X1, ..., Xn are i.i.d, random vectors in Rp. Let g :
Rp → Rd1×d2 be a continuous function such that ‖g(Xi)‖ ≤ K almost surely, in
operator norm, for all i. Let µ = E{g(X)g(X)>}. Then,

(i) ∥∥∥∥ 1

n

n∑
i=1

{g(Xi)g(Xi)
>− µ}

∥∥∥∥ = Op(n
−1/2).

(ii) ∥∥∥∥ 1

n

n∑
i=1

{g(Xi)g(Xi)
>− µ}

∥∥∥∥ = Oas

(√
log n

n

)
.

Proof. Let Zi = g(Xi)g(Xi)
>− µ so that ‖Zi‖ ≤ 2K2 almost surely, E(Zi) = 0,

and var(Zi) has finite entries. For (i), it suffices to show that, for any fixed ε ≥ 0,
there is a sequence cn � n−1/2 such that

P

(∥∥∥∥ 1

n

∑
i

Zi

∥∥∥∥ ≥ cn) < ε, ∀n.

By Matrix Chebyshev’s inequality [4, 3],

P

(∥∥∥∥ 1

n

∑
i

Zi

∥∥∥∥ ≥ cn) <
1

n2c2n
E

∥∥∥∥∑
i

Zi

∥∥∥∥2

≤ 1

nc2n
E‖Z1‖2.

So, choosing cn = {E(‖Z1‖2)}1/2(nε)−1/2 gives

P

(∥∥∥∥ 1

n

∑
i

Zi

∥∥∥∥ ≥ (E(‖Z1‖2)

ε

)1/2

n−1/2

)
< ε, ∀n,

which proves (i).
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For (ii), we appeal to Bernstein’s Inequality for Matrices and the first Borel-
Cantelli Lemma. Since ‖Zi‖ ≤ 2K2, we have

σ2 =

∥∥∥∥ n∑
i=1

E(Z2
i )

∥∥∥∥ ≤ E‖g(Xi)g(Xi)
>
g(Xi)g(Xi)

>‖ ≤ nK4.

By the matrix version of Bernstein’s inequality [4, 3], we have, for any c > 0,

P

(∥∥∥∥∑
i

Zi

∥∥∥∥ ≥ c√n log n

)
≤2(p+ 1) exp

− log n
c2/2

K4 + 1
3K

2c
√

logn
n


≡2(p+ 1)n−dn ,

where dn = c2

2K4+ 2K2c
√

log n
3
√

n

for n = 1, 2, . . .. Note that d0 < dn ↑ d, where

d0 = c2

2K4+ 2K2c
3
√

e

and d = c2

2K4 . Summing over n, we get

∞∑
n=1

P

(∥∥∥∥∑
i

Zi

∥∥∥∥ ≥ c√n log n

)
≤ 2(p+ 1)

∞∑
n=1

n−dn ≤ 2(p+ 1)

∞∑
n=1

n−d0 .

So we need to choose c so that the series on the right converges. This can be
achieved by choosing

1 <
c2

2σ2 + 2Kc
3
√
e

=⇒ 0 < 3
√
ec2 − 2Kc− 6

√
eσ2 =⇒ c >

2K +
√

4K2 + 72eσ2

6
√
e

.

Then the first Borel-Cantelli Lemma then gives us ‖
∑
i Zi‖ = Oas(

√
n log n),

which is equivalent to (ii).

8.3. Bai, Miao, and Rao’s Lemma

This Lemma is from [1]. In the following, let O(c) denote a number whose
absolute value is bounded by Mc, or a matrix whose entries have absolute
values bounded by Mc, where M is any constant independent of c. Let O(ck)
be similarly defined. Note that O(c)O(c) = O(c2), whether O(c) is a number or
a matrix.

Lemma S.8.3. Let A = (aik) and B = (bik) be two symmetric p × p matrices
with spectral decomposition

A =

p∑
k=1

δkuku
>
k, δ1 ≥ δ2 ≥ · · · ≥ δp,

B =

p∑
k=1

λkvkv
>
k, λ1 ≥ λ2 ≥ · · · ≥ λp,



Quach and Li/Supplementary Material: On Forward Sufficient Dimension Reduction 36

where δk, λk and uk, vk are the eigenvalues and corresponding orthonormal eigen-
vectors of A and B, respectively. Suppose there are s distinct eigenvalues, de-
noted by λ̃1 > λ̃2 > · · · > λ̃s, where each λ̃h has multiplicity mh. Let nh =
m1 + · · ·+mh, so that 0 < n1 < · · · < nh = p. Set n0 = 0.

If |aik − bik| < c for all i, k = 1, ..., p, then there exist constants M1,M2 > 0,
independent of c, such that

(i) |δk − λk| < M1c, k = 1, 2, ..., p (i.e. δk = λk +O(c)), and

(ii) if C(h) = (c
(h)
lk ) is the p× p matrix defined by

C(h) =

nh∑
k=nh−1+1

uku
>
k −

nh∑
k=nh−1+1

vkv
>
k,

then |c(h)
lk | ≤M2c for all k, l = 1, . . . , p and h = 1, . . . , s.

Intuitively, this lemma says that the differences between the eigenvalues and
eigenvectors of two matrices are of the same order of magnitude as the differences
of the entries of the two matrices.

Proof. (i). By Von-Neumann’s Trace Inequality, |tr(AB)| ≤
∑p
i=1 δiλi, we have

p∑
i=1

(δi − λi)2 =

p∑
i=1

δ2
i +

p∑
i=1

λ2
i − 2

p∑
i=1

δiλi

≤ tr(A2 +B2 − 2AB)

= tr{(A−B)(A−B)}

=
∑
i,j

(aij − bij)2 = p2c2,

which implies (δi − λi)2 < p2c2, proving (i) with M1 being p.
(ii). By assertion (i),

A =

p∑
i=1

δiuiu
>
i =

p∑
i=1

(λi +O(c))uiu
>
i =

p∑
i=1

λiuiu
>
i +O(c) =

s∑
h=1

λ̃h
∑
i∈Lh

uiu
>
i +O(c),

where Lh = {nh−1 + 1, . . . , nh}. Then, from boundedness assumption A =
B +O(c), we get

s∑
h=1

λ̃h
∑
i∈Lh

uiu
>
i +O(c) = A = B +O(c) =

s∑
h=1

λ̃h
∑
i∈Lh

viv
>
i +O(c).

Let Ph(A) ≡
∑
i∈Lh

uiu
>
i and Ph(B) ≡

∑
i∈Lh

viv
>
i . Then the above equation

can be written as
∑s
h=1 λ̃hPh(A) =

∑s
h=1 λ̃hPh(B) +O(c).

We next use mathematical induction to prove (ii). If s = 1, then

λ̃1P1(A) = λ̃1P1(B) +O(c)⇒ Ph(A) = Ph(B) +O(c),
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so (ii) holds for s = 1. Assume, for induction, that (ii) holds for s = t− 1; that
is, Ph(A) = Ph(B) +O(c), for all h = 1, ..., t− 1. Then

t−1∑
h=1

λ̃hPh(A) =

t−1∑
h=1

λ̃hPh(B) +O(c)

⇒
t−1∑
h=1

λ̃hPh(A)− λ̃t
t−1∑
h=1

Ph(A) =

t−1∑
h=1

λ̃hPh(B)− λ̃t
t−1∑
h=1

Ph(A) +O(c)

⇒
t−1∑
h=1

(λ̃h − λ̃t)Ph(A) =

t−1∑
h=1

λ̃hPh(B)−

(
λ̃t

t−1∑
h=1

Ph(B) +O(c)

)
+O(c)

⇒
t−1∑
h=1

(λ̃h − λ̃t)Ph(A) =

t−1∑
h=1

(λ̃h − λ̃t)Ph(B) +O(c).

Hence, for any v ∈ Pt(B), which is orthogonal to P1(B), ..., Pt−1(B), we have

t−1∑
h=1

(λ̃h − λ̃t)Ph(A)v =

t−1∑
h=1

(λ̃h − λ̃t)Ph(B)v +O(c)⇒
t−1∑
h=1

(λ̃h − λ̃t)Ph(A)v = O(c).

Since λ̃h − λ̃t > 0 for all h = 1, .., s, we have Ph(A)v = O(c) for all v ∈ Pt(B),
which means 〈Ph(A), Pt(B)〉 = O(c), for h = 1, ..., t−1, where the inner product
between matrices S, T of the same dimension is defined as 〈S, T 〉 = tr(ST>).

Let U1 be an orthonormal basis (ONB) for ⊕t−1
h=1Ph(A), U2 an ONB for

Pt(A), and U = (U1, U2). Similarly, let V1 be an ONB for ⊕t−1
h=1Ph(B), V2

an ONB for Pt(B), and V = (V1, V2). Then 〈Ph(A), Pt(B)〉 = O(c) implies
that 〈U1, V2〉 = O(c) and, by symmetry, 〈V1, U2〉 = O(c). Furthermore, since
V = (V1, V2) forms a basis, we can express U2 in terms of the bases V1, V2 as
U2 = V1G1 + V2G2, G1 ∈ Rnt−1×(nt−nt−1) and G2 ∈ R(nt−nt−1)×(nt−nt−1).

Since U = (U1, U2) is an ONB for Rp, we have U2U
>
2 = Ip−U1U

>
1. Therefore,

V
>
2U2U

>
2V2 = V

>
2 (Ip − U1U

>
1)V2 = V

>
2 V2 +O(c)O(c) = Ip−nt−1 +O(c2).

Since 〈V1, U2〉 = O(c), we also have

O(c) = 〈V1, U2〉 = 〈V1, V1G1 + V2G2〉 = Int−1
G1 = G1,

implying G1 = O(c), and so U2 = V1O(c) + V2G2 + O(c) = V2G2 + O(c). Now
note that

G2G
>
2 = V

>
2 V2G2G

>
2V
>
2 V2

= V
>
2 (U2 +O(c))(U

>
2 +O(c))V2

= V
>
2U2U

>
2V2 +O(c)

= Ip−nt−1
+O(c2) +O(c)

= Ip−nt−1
+O(c).
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This gives us

Pt(A) = U2U
>
2 = V2G2G

>
2V
>
2 +O(c) +O(c2)

= V2(Ip−nt−1
+O(c))V

>
2 +O(c)

= V2V
>
2 +O(c)

= Pt(B) +O(c).

By the induction assumption, we conclude that Ph(A) = Ph(B) + O(c) for
h = 1, .., t, completing the proof.
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