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1. Derivations for Categorical and Ordinal-Categorical Linear
Exponential Family

We derive the multivariate link functions for categorical and ordinal-categorical
variables and express their distributions as linear exponential families using the
multivariate links.
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1.1. Multivariate Logit link and Multivariate Expit function

For notation, refer to section 3 of the paper. The density and log-likelihood of
S are

m _ 1-81—...—s™
f(S;p)oc(prJ>(1—p1—~-~—pm> :
j=1
0(6;5) =0(p)’S —log(1 - 1,,p).

respectively, where

0(p) = log (1 _pf p>,

defines the canonical link, which is known as the Multivariate Logit link. The
inverse canonical link is
04T 0 9
e’l e e
= (I 4+ €17 ) 1ef — ¢f — m _

where the second equality follows from the Woodbury formula. This inverse of
the multivariate logistic link is called the Multivariate Expit function.

1.2. Adjacent-Categories (Ad-Cat) Logit Link

Recall that the density of T', via the multinomial distribution of S, is

mo v p Tl p T’”O*l
F(T;p) p<S]=p <2) (mo) 7
oo = (%) (=
since T =1, T™° = 0, and S/ = T9~! — T . The log-likelihood for T*,...,T™
is then

Up;T) = ZTj log (]7;4-1) + log(p1).
=1 ’

Letting 6(p) = (01(p), - - -, 0m(p)), where, for j =1,...,m,

0(p) = log (mﬂ)

Dj

we rewrite the log-likelihood as ¢(p; T') = 0(p) T +log(p1). To derive the canon-
ical link, we need to determine the relation between 6 and the mean of T'. We
derive the mean of T' and the covariance of T" below.

Forj=1,...,m,let v =p1+---+p;. Let 0 =0, vy = 1. Let 7; =1 —;
for j =0,...,mqg. Let 7= (71,...,7m)". Since T7 = 1{Y > j}, we have

E(T)) =P >j)=1—~; =1
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Since, for j <1, T9T' = T, we have
E(MTHY=E(TY=1-~=m.
Likewise, for j > [, we have E(TVT') = E(T7) = ;. Hence
var(T9) = 7;(1 — 75), cov(T7,T") = Tmax{j,0} (1 = Tmin{j,13)-

Summarizing the above results in matrix form, we have

T1 T2 e Tm—1 Tm
T2 T2 0 Tm=1 Tm
.
E(T)=7, var(T)=T—77, where I =
Tm—1 Tm—-1 " Tm—-1 Tm
Tm Tm e Tm Tm
Now we can express 64,...,0,, as functions of 7 as follows

0, = log (pj-i-l) ~ log (FY]:-‘r_l —.%') ~log (TJ — 73+1>’
bj Vi~ Vi1 Tj—1—Tj

which is the canonical link, also known as the Ad-Cat link. Let

0 1
#=(i o)
be the permutation matrix that maps (a',...,a™) to (a™,a’,...,a™~'). Then it
is easy to check that the Ad-Cat link can be written in matrix notation as

0 = 0(r) = log{[diag{(P~' — )7}]""(P~! — I)7}.

We next compute the inverse canonical link mapping 6 to 7. Note that, for
r=1,...,m,

>0 —tog (). (s1)
pat 1—7

Hinted by this, we define

J

¢j(0):ZHeXp(08):Zexp <203>, j=1,...,m. (S2)
r=1 s=1

r=1s=1

Let ¢(0) = (¢1(0),...,0m(0))", L the lower triangular matrix of 1’s (including
the diagonal). Then the above equations can be written in matrix form as ¢(6) =
L exp(L0). Meanwhile, by (S1) and (S2),

6(6) = Lexp(LO) =

(1 —72,...,71 — Tm,’Tl)T.

1—7’1



Quach and Li/Supplementary Material: On Forward Sufficient Dimension Reduction 4

Permute ¢(0) by using P to obtain
1 T 1

Po(0) Zfﬁ(Thﬁ—TQ,-u,ﬁ—Tm) ZWQT,
where @ is a difference matrix given by
1 0 0 20 0
1 -1 --- 0 10 --- 0 .
Q=1|. . : =1 - e E I A te)er
10 - -1 10 -+ 0

Solving the equation P¢(f) = (1 —ef 7)~1QT for T gives us
7(0) = [~In + {1 + e1 + Po(0) el | "' P (0).
By the Sherman-Woodbury formula, we have
(—Lm){lm + €1 + Po(0) }e! (—1im)
Lt e (=Ln){Lm +e1 + Po(0)}
-~ {1 +e1 + Po(6) }ef
L—ef {1 +e1+ Po(0)}

Use the relation 1 —e{ {1,, +e1+P¢(0)} = —{1+e] Pp()}, to further simplify
the above as

_ —Po(0) + 1ne] Po(0) + eref Po(0) _ QPLexp(L9)

B 1+ e/ Po(6) "~ 1+4e PLexp(Lf)

[~Im +{1+e1 + P¢(9)}61T]71 =—1In—

=1,

7(6)

This is the inverse Ad-Cat Logit link.
Also note that

T1

log{1 + e] PLexp(L#)} = log (1 + T

) = —log(l — 1) = —log(p1).

Hence, the log-likelihood of T has the following linear exponential family form
10;T)=6"T —b(6),

where b(6) = log{1 + e; PLexp(L0)}.

2. Newton-Raphson for Step 3 in Algorithm 3

In this section, we describe in detail the minimization in step 3 of Algorithm 3
in the paper. That is, the minimization of the negative local log-likelihood

n

‘g(alv ceey Qp,y Clv eeey Cn»ﬁ; Yl:naXlzn) = Zgj(ajv ijﬂ; Yl:naXl:n)u

Jj=1
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over (8 for fixed aq,...,a,,C4,...,C,, where
gj(ajacjaﬁ;ylcnaXl n ZWZJ {ag + CTBT(X X )}TY

- b(aj +Cf BT(X; — X;))).

Let B, = vec(8T) € R? and U;; = (X; — X;) T ® C]T € R™*4P_ Suppressing
the fixed variables from the notation, we express the negative log-likelihood,
score and information, as a function of j3,, as

Bv =n 122 zg {5 UTY (aj+Uij51))}v

1:=1

<.
Il

S(ﬂv) :nil b(aj+Uij6v)}7

NE
NgER

0
Wi (WUG{Y: — 22
14 ’ 9B,

" - Ob(a; + U;;8y)

-1 U J J
Z W'Lg ” 861;861—; e

I
—

J

j=11i=1

Given an initial estimate for f3,, we iterate B(TH = @(,T) + J_l(quT))S( Af,r))
until convergence according to some criteria. One option for the initial value of
B is to use the OPCG estimate, Bopcs. We denote the converged iterate result

as B, and set = mat(8,)".

3. Unbiasedness and Exhaustiveness of OPCG

In this section, we prove a more general version of Proposition 4.1 in the paper.
Proposition 4.1 in the paper follows by taking ¢(X) below to be the canonical
parameter 6(X).

Proposition 4.1. Suppose X € Qx C RP and Y € Qy C R™ satisfy ¥ 1L
E(Y|X)|B'X for B € RP*?, Lett: Qx — Qy be a differentiable function such
that t(X) = t(8"X). Then

(a) The columns of the gradient, Ot(x)"/0x € RP*™, belong to Lgy|x)-
(b) Let U = B"X. If the d x d matriz

Nk { OI(U) 9i(U) }

ou  Ou’
18 full rank, then

[ [Ot(X) 0t(X))]
span -E{ax axT ] = ,VE(y|X)

(¢) If U is supported on a convex set with a nonempty interior, then

ot(X) ot(X) ]
span_E{ or  or J) = YB(Y|X)-
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Proof. For (a), we have, by the chain rule, dt(x)"/0z = BOt(u) /Ou, where
Ot(u) T Jou € R4*™ This implies
ot(z)" Ot(u) "
span{ o } = span{ﬁ 5 Cspan(B) = LEv|x)-

Therefore, the columns of 9t(z) " /0z belong to gy |x)-
For (b), note that

{E {8t(X)T8t(X)H _ 5[13 { OH(U) HE(U) H 5 BAS"

ox  Ox' ou  Ou’
Since A is full rank, we have
ot(X)" 0t(X)
span |:E{ o o = yE(le) .
For (c), let

B o(X)T 0t(X) oxp
A= (20T A0Y oy

We need to show span(A) = span(). By the chain rule,

o) T OHU)\
A=pBE | ——
b < ou  Ou' b
implying span(A) C span(8). It remains to show span(A) is not a proper sub-
space “g(y|x). Suppose span(A) C span(3). Then ker(A) 2 ker(83), so there
exists o # 0 € RP such that a ¢ ker(f) and o € ker(A). Since a ¢ ker(8), we
get BTa # 0. Since « € ker(A), the quadratic form o A« satisfies

ot T ot(U)
0O=a'Aa=E (aTﬁau T ﬁTa) .

The non-negativity of the expression inside the expectation implies that it must
also be 0 almost everywhere. The quadratic expression then implies

i)
0= ou"
Ot(u)

for all u € supp(U), where f'a = v # 0 € R Then we see that 5.7y = 0 for
all u € supp(U).

Let uy,us € supp(U) such that the segment is us — uy is parallel to v € R4,
which is possible because supp(U) contains an open ball. We take the derivative
of t(u) at any point along the line us —u1, say at the point ug = (1 —&)uy + cus
for some € > 0. Then

Ot (1 — &)uy + eug) Ot (1 — e)ug + cug)

0z = (u2 —w) ou
where the last equality follows from (S3). This implies that ¢(z) does not change
in the direction of . This contradicts g(y|x) being a minimal dimension

reduction space, since .7y |x)©span(y) is then an even smaller SDR subspace
for E(Y|X). O

Bla, (S3)

=0eR™,
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4. Preliminaries and Assumptions for theoretical developments

In this section, we provide some preliminaries and assumptions needed for the
theoretical developments in the next few sections. We present the developments
for general, strictly convex loss functions instead of the negative log-likelihood.
This is because the negative log-likelihood for a linear exponential family can be
associated with a strictly convex deviance loss criteria. In the developments that
follow, we can always take strictly convex loss function as being the deviance
function p(6,y) = —£4(0;y) + £(6o; y), where 6y is the unique minimizer of the
negative log-likelihood. Then our results in this section will be directly applicable
to our results in the paper.

4.1. Preliminaries

For theoretical purpose it is much easier to work under a more general framework
than the setting of multivariate GNM. We first set up this general problem. Let
(X,Y) be a pair of random vectors taking values in Qx x 2y, where Qx C RP
and Qy C R™. Let © C R™ be the parameter space. Let p: Qy x © — R be a
loss function, and let Ry(8,z) = E[p(Y,0)|X = ] be the conditional risk. Let

0(z) = argmin Ry (6, x).
TENx

Then OPCG and MADE amount to estimating the gradient function 80" (z)/0x.
Due to the nonparametric nature of this problem, it is impossible to set an
objective function with finite-dimensional argument. So, we instead set up an
objective function with a tuning parameter h,, hoping that, as h, — 0, the
minimizer of the objective function converges to 90'(x)/dz.

To achieve this goal, we construct the following population- and sample-level
objective functions. For a € R™, B € RP*™ and h,, > 0, let

R(hn,a, B, x) = E{K (h;' (X — 2))p(Y,a + B'(X - 2))}.

Let (X1,Y7),...,(X,,Y,) be an i.i.d. sample from (X,Y). Our sample-level loss
function is

R(hy,a,B,z) = E,{K(h; (X —z))p(Y,a+ B'(X —z))}.

For analytic and algorithmic convenience we reexpress the parameter (a, B)
in a vectorized form. We also need to have a convenient notation to multiply B
by a constant in (a, B). For these purposes we introduce the following functions:
for u € R? and h € R, a € R™ and B € RP*"™ let

V() = <i> ©1,, D(h) = <(1) h%,) @1, wec(a, B) = (VeC?BT)> .
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The notation wec is inspired by the fact that the letter w looks like two v’s,
indicating we are vectorizing two objects together: one vector and one matrix.
Also note that there is a transpose in vec(B"). In this notational system,

a+ B'(X —2) =v(X —z)'wec(a, B), v(hu)= D(h)v(u) = (hlu) ® I,

Letting ¢ = wec(a, B), we can reexpress R(h,,a, B,x) and R(hn, a, B, ) as
E{K(h;' (X —2))p(Y,v(X —z)'c)}, B {K(h; (X —2))p(Y,v(X —z)'c)}.

With a slight abuse of notation, we still use R(hy,c,x) and I:I(hn,c7 x) to de-
note the above two functions. We will abbreviate h,, as h if doing so causes no
ambiguity. Let

co(z) = wec(0(x),00(x)/0x), c(h,x) = argmin R(h,c,z),

ceRm(p+1)

é(h,z) = argmin R(h,c,z).
ceRmM(p+1)

We will use a to denote the first m components of ¢, and b the (m+1)th through
(m 4+ mp)th components of ¢. This applies to ¢o(z), c(h, z), and é(h,z) as well.

We need a systematic notation to denote vectors, matrices, or multi-dimensional
arrays of derivatives. For a vector-valued function of three variables, say f(h, ¢, z),
we use 01 f(h,c,z) and 0af(h, ¢, z) to denote the derivatives with respect to the
first and second argument of f. When c is itself a function of h, x, we use J, to
denote the derivative with respect to h. Specifically,

alf(hv G, {E) :af(hv () x)/ah,
Dof(h,c,z) =0f(h,c,x)/0c,
Onf(h,c(h,x),z) =01f(h,c(h,z),x) + 02 f (h,c(h, z),z)é(h, ),

where ¢(h, x) is the derivative of c¢(h,z) with respect to h. For a function f :
RP x R™ — R, the notation 83 f(x, y) and 93 f(x, y) denote the second-derivative
matrices with respect to the first and second argument, respectively. For exam-
ple, 97 f(z,y) is the matrix 02 f(x,y)/0xdx". For a function g : R™ x R™ —
R™, the notations d?g(y, #) and d32g(y, ) are 3-dimensioal arrays: for example,
02g(y,0) is the 3-dimensional array consisting of matrices Ay, ..., A,,, where
A; = 0%g;i(y,0)/0000", g; being the ith entry of the m-dimensional vector g.
Furthermore, if « is an m-dimensional vector, then

a'02g(y,0)a = (a'Ara,...,a Aya).
We will show uniform consistency of the estimates é(x) over = € Qx,

sup ||é(h,z) — co(z)|| =20 as n — oo.
r€Q X
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We will also derive the uniform convergence rate for the estimate é(x). To com-
pute the convergence rate, we upper bound the supremum above by a stochas-
tic/variance component and a deterministic/bias component:

sup [[é(h,x) — co(@)|| < sup [[é(h,x) — c(h,2)||+ sup [c(h,z) — co()] -
€N X €N X €N X

variance/stochastic bias/deterministic

4.2. Assumptions

We replace Assumptions 3, 4 and 5 in the paper with a set of general assumptions
about a strictly convex loss function p(y, #). We do so because the negative log-
likelihood for a linear exponential family is a special case of a strictly convex
deviance loss criteria, and the latter is easier to work with.

Assumption 3'. The parameter 0 is identifiable and the loss function p(y,0)
1s strictly convex in 0, twice continuously differentiable in 0 and has a unique
minimum. If g(y,0) = 9p(y,0)/00, then there exist s1 > 2 and so > 2 such
that |lg(y,0)]] < Mi(y) with B[M(Y)] < o0 and |9ag(y,0)]| < Ma(y) with
E[My(Y)*] < oo.

Assumption 4'. For each x € Qx, Ro(0,x) has a unique minimum 6(x) over
O, where 0(x) is continuously differentiable. The parameter spaces © C R™ is
compact and convez.

Assumption 5'. Derivatives and integrals in

%//P(%G)f(x,y)dydx and %/g(yﬂ)f(ym)dy.

are interchangeable.

5. Proofs of Fisher Consistency

In this section we prove the Fisher consistency and convergence rate of ¢(h, x)
to co(z). This is the bias part of the asymptotic development: there is no
randomness involved. Recall that ¢(h, ) is the solution in ¢ of the equation
OaR(h,c,z) = 0. Let S(h,c,x) = D(h)"193R(h,c,z). Since D(h) is nonsingular
for h € (0,1), ¢(h, ) is also the solution to the equation S(h,c,x) = 0. The mo-
tivation of changing da R(h, ¢, z) to S(h, ¢, z) is to clear away any proportionality
constant that depends on h. By computation, the specific form S(h, ¢, z) is

S(h,c,x) = /Q . K(u)v(u)g(y, v(hu) c) f(z + hu, y)dudy. (S4)

The following lemma gives an expression for 90(x)/dz', which corresponds to
the last mp entries of ¢y(x), which we show in Lemma S.5.2.
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Proof. Since Ry(6,x) has unique a minimizer at 6(z), taking derivatives of the
conditional risk gives

Lemma S.5.1. Under Assumptions 2, 3', 4, 5" we have

M(x) _ { E[ag(y,em) x] }‘1 p [g(y’ o(z)) 2108 S WI)

or’ 90" or"

where g(y,0) = dp(y,0)/00.

0= ORo(6(x), ) /06 = Eldp(y, 8(x)) /06X = 2] = Elg(y, 6(x))|X = ).

Since the above holds for all x, taking the derivative with respect to x will again
yield 0:

0= 2 Blgy, 0())|xX = ]

- o'
= 2 [ w6l
— [ (w00 f(wlo)dy
_ [ 99(y,0(x)) 06(x) Of (ylz) 1
= [ 2T staforay + [ ot o) EUD L i
= E{ 8g(y8709T($)) ’x} 8;;? + E{g(y7 H(x))ialogaj;gmw ;v}
Solving for 96(x)/0x" yields the desired result. O

In the following, for a function f(h) of h, we use f(0+) to denote limy o f(h).
The next lemma provides an expression for ¢g(z) and the derivative of the first
m entries of ¢(h,x) evaluated at 0+.

Lemma S.5.2. If Assumptions 2,3',4',5',6 hold, then, for each x € Qx,
a(04,z) = 0(z), a(0+,2) =0, b(0+,z)=vec{dd(x)/0z"}.
Note that another way to write the first and third relation is ¢(0+, z) = co(x).
Proof. Since S(h,c(h,x),z) =0 for all h > 0, we have, by (S4),
SO+ c(0+,0),0) = [ K()(wgly. 10) e(0+,2)) fa. y)dudy = 0.
QXny
(S5)

By the definition of v, and Assumption 6 on K (u), we have

v(0) c(0+, 2) = a(0+, ), A K(u)v(u)du = (é) ® Iy, (S6)
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Also note that [, g(y, a(0+,2)f (. y)dy = f(2)Elg(Y, a(0+,2))|a], where f(z)
is the density of X evaluated at x. Hence (S5) can be rewritten as

<f (m)E[g(Y,(iz(o+, x)x)]) =0.

Since 0(x) is the unique solution to F[g(Y, a(0+, z)|z)] = 0, we have a(0+, z) =
0(x).

Next, differentiating the equation S(h,c(h,x),z) = 0 with respect to h, we
have

01S(h,c(h,x),x) + 02S(h, c(h,x),z)¢(h,x) = 0. (S7)
By computation, the first term on the left-hand side of (S7) is

M S(h,c(h,z),z) = A(h,c(h,z),z) + B(h,c(h,z), ),

where
A(h, c(h,x) /K u)dog{y, v(hu) c(h, z)}{(0,u") ® I, }e(h, )
x f(x + hu,y)dudy
B(h,c(h, z) /K u)g{y, v(hu) c(h, x)}o1 f(x + hu,y) ududy,

Taking the limit h | 0 for A(h, c(h,z),z), we have

0m><1
A0+, c(0+,2),2) = (f(:v)E[ﬁzg(K e<x>>x1b<0+7x>> ’

where we have used [(0,u") ® I,]c(0+,z) = b(0+,z), [ K(u)uu'du = I,, and
the relation (S6). By a similar computation,

O17’L><1
B(0+, ¢(0+, ,
(O+,c(0+,2),@ (fgy o f(z,y) ®9(y,9(9€))dy>
where we have used the relations v(0)'¢(0+, z) = a(0+, z) z), [ K(u)udu =

0, and [ K(u)uu'du = I,. By
o f(x,y) = f(2)f(ylz) + f(2)[0f (ylz) /0x)),

and

A f@)f(yle) © g(y, 0(@))dy = f(x) @ [ flyl)g(y. 0(z))dy =0,

Qy

we have

Om.><1
B(0+,c(0+,z),7) = (f(x) Jo, [0f(,y)/02] @ g(y, G(x))dy> '
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The second term on the left-hand side of (S7) is
| @0ty ) elh ) (0 ) o + ) dudy,
QX XQY
which, upon taking the limit & | 0, becomes
025(0+,(0+2),2)i(0+,2) = [ K(u)v(w)0ag{y. 0a) (0) é(0+,) () dudy

- / K (u)(w)dag{y, 0(2) Y0+, ) f (2, y)dudy
_ (E[agg{x e<x>}|x]f<x>a<o+,x>) |

0mp><m

To summarize the results for A(0+,z(0+,z),2) and B(0+, ¢(0+,z), z), from
the above and the equation (S7), we have the following equations

E[029{Y,0(x)}|x]a(0+, ) = 0,
f(@)E[029{Y, 0(2) }|z]b(0+, z) + f(fﬂ)/ [0f (z,y)/0x] © g{y, 0(x)}dy = 0.

Qy

The first equation gives us the second relation in Lemma S.5.2; and the second
equation, combined with Lemma S.5.1 and the fact uv" = v ® u for any vectors
u, v, implies the second relation in Lemma S.5.2. O

We now use this lemma to prove Theorem 4.1 and Theorem 4.2 in the paper.
We first restate them here for reference.

Theorem 4.1. If Assumptions 2,3',4',5',6,7 are satisfied, then, as h | 0,

sup [la(h, z) —0(x)[| = O(h?),  sup ||B(h,z) —00(x)'/dz|| = O(h). (S8)

€N X TEQ X

Proof. By Taylor expansion about ¢o(z),
0= S(h,c(h,z),z) =S(h,co(x),z) + 025(h, ', x)D(h~1)D(h)[c(h, z) — co(z)],
where ¢! is a vector between the line joining c(h, x) and ¢(0+, z). Hence

I1D(h)[c(h, z) — co(z)]]]
< sup 1{025(h. ¢, )D(h" | sup [|S(hco(w), )] 59
hel0,1],ze€Qx,c€EA QX

Note that 925 (h, cf, z)D(h™1) is exactly the integral in part 2 of Assumption 7.
Hence

sup H{@gS(h,cT,x)D(h_l)}_lﬂ < 00. (510)
he(0,1],z€Qx ,cEA
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By Taylor expanding S(h, co(x),x) about hg > 0 and then letting hq | 0,
S(h,co(z),z) = S(0+, co(x), ) + DS (04, co(), x)h + $03S(hT, co(z), )R,

where h' is a point between 0 and h. The term S(0+,co(z),z) is 0 because
S(h,c(h,z),z) = 0forall h > 0. Also, differentiating the equation S(h, c(h, x), x)
0 with respect to h, we have

015(0+, co(z), ) + 02.5(0+, co(x), x)éo () = 0.

As we have already seen in the proof of Lemma S.5.2, the first term on the
left is a vector whose first m entries are 0, and the second term is a vector
whose last mp entries are 0. Hence the above equation implies first term is 0,
i.e. 015(04, co(z),z) = 0, and consequently,

S(h,co(z),z) = 207S(ht, co(x), x)h2.

-2
Then

sup [|S(h, cole), 2)]| < 3 SUPLe(0,1) ceAweny 107 S(h, c, )| A2, (St1)

By straightforward computation,
9tS(h,c,x) = Li(h,c,x) + Io(h, ¢,x) + Is(h, ¢, ) + Ly(h, ¢, @),

where Iy (h,c,z), Io(h,c,x), I3(h,c,x) and I4(h,c,z) are as defined in part 3 of
Assumption 7. By part 3 of Assumption 7, then

sp |38 (h, e, 1) < oo
he(0,1),ceA,xeQx

Hence, by (S11),

sup 1S(h, co(), x)|| = O(h?). (512)
zellx

Combining (S9), (S10), and (S12), we have || D(h)(c(h,x) — co(z))|| = O(h?), or
equivalently

la(h, 2) = 0(x)| = O(h?),  h|jb(h, ) — vec{00(x)/dz"}|| = O(h?).

These are equivalent to (S8), since B(h,z) = mat{b(h,z)}", || - [|lr = |[vec(")|,
and operator norm is upper bounded by Frobenius norm, where mat(-) maps a
vector to a matrix by filling the columns of the matrix from left to right with
the consecutive elements in the vector. This completes the proof. O

Let B(h,z) = mat{b(h,z)}" € RP*™. We use the uniform Fisher consistency
above to show that the candidate matrices, and their corresponding eigenvectors,
are also Fisher consistent. Statement (b) of the theorem below corresponds to
Theorem 4.2 in the paper.
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Theorem 4.2. If Assumptions 2,3',4'5",6,7 hold, then, for h € [0,1], and as
o0,

(a) Then A(h) = E{B(h,X)B(h,X)"} is Fisher consistent for

(- s{m )

and ||A(h) — A|| = O(h).

(b) Let n(h),n be matrices with columns comprised of the first d eigenvectors of
A(h), A respectively. Then

m(n(h),n) = [n(R)n(h)" = nn'll = O(h).
Proof. For (a), we have

IA(R) — A HE{B(h,)()B(h,X)T 26(X)T 90(X) }H

ox oz’

00(X)" 09(X)
oz oz’

where the last inequality follows from Jensen’s Inequality. Note that we can

re-arrange the difference as

gE{HB(h,X)B(h,X)T

B(h, X)B(h, X)" — % ag(:f)
{00~ 20T g,y 2T {3 - 20200
+ aeéf)T{B(h,X) GGéx) }
Then Theorem 4.1, smoothness of 6(-), and compactness of Qx give us
E{HB(h, X)B(h, X) — 89;96) 82&) ’}
<[ oo 25T w2 s e~ T < e |52

<O(h* + h) = O(h),

which completes the proof for (a).
For (b), note that [| - |[r < \/pl| - ||, so [|A(h) = Alle < \/p[A(R) = Al = O(h).
By Lemma S.8.3(b) of [1], we obtain the final result

d d
In(Ryn(R)" ="l <D e (Ryme(h)" = mem | < Y e (h)mi(h) " — maml|e
k=1 k=1

— o(n),

where 1, (h) and 7, are the k** columns of 7(h) and 7, respectively, completing
the proof. O
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6. Proofs for Consistency of OPCG

In this section, we develop the uniform convergence rate of sup,cq . ||¢(h,z) —

¢(h,z)|. Recall that é(h,z) is the solution in ¢ of the equation 8, R(h, ¢, z). By
the same motivation for the definition of (S4), we define

S(h,e,x) =h"PD(h) ' R(h, ¢, x),
=h"PD(h) "' E {K[(X — 2)/hv(X —2)g(Y,v(X —z) c)}.

Then ¢(h, x) is also a solution in ¢ of the equation S’(h, ¢,x) = 0. Next, we make
the following assumption.
Assumption 9. Let Z = (X,Y) and

(i) male,w: Z) = RKT(X — 2)/RI(X — o) [hlg(Y, (X - a)'c),

(ii) mp(c,x;Z) = h2K[(X — z)/hv[(X — x)/h)0og(Y,v(X — z)"c) /00" .
Suppose each of the above functions satisfy:

(a) For some cy,co > 0,
Imn(c, 2, Z) —mn(c,a’, Z)|| < ||z — 2'||*n*2 L1 (Z),

with E|L1(Z)| < 0o, and where || - || is the Euclidean norm,

(b) For some c3,cq4 > 0,
[mn(c, 2, Z) —mn(c 2, Z)|| < |le—||*n™ La(Z),

with E|Ls(Z)| < oo, where || - || is the operator norm when applied to a
matriz (left) and the Euclidean norm when applied to a vector (right).

The following lemma shows that the negative log-likelihood of a linear ex-
ponential family that we use in the paper, i.e. p(y,0) = —0"y + b(0), satisfies
Assumption 9.

Lemma S.6.1. Suppose Assumptions 2,3',4',5,6,7,8 hold and let p(y,0) =
—0"y + b(0). Then Assumption 9 holds.

Proof. Since g(y,0) = —y + b(0), the two functions in Assumption 9 are
(1) man(c,x; Z) = hK((X — 2)/hv[(X — 2)/h[{=Y + Ob(v(X — x)'c)/06},
(i1) m)r;glcﬁx, Z)=h*K[(X—xz)/hv[(X —z)/h]{0*b(v(X —x)"c) /0000  }v[(X —

We first check that (¢) satisfies (a) and (b) of Assumption 9. For (a), we can
assume that h is chosen sufficiently small so that z and z’ are in a convex subset
of Qx, and apply the mean value theorem by appealing to the smoothness of g,
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K and v. This gives us

Imn(c, z; Z) = mn(c, 2'; Z)||
<[|omn(c, 2 Z) /0|l — 2’|
<hID(hHIOIK(X — «*)/hlvec{v(X — a?)[-Y +b(1(X —at)e)]}]/02]|
X o — 2|
<[IK[(X —a*)/hlolvec{v(X —a*)[=Y +b(v(X —a*) o)]}]/ 0|z — /|
+ [ HOK((X — a¥)/h] foulvec{v(X — a*)[-Y +b(v(X —z) )]}l — ']
<n®Cy(Y)lz — 2/,

where z* lies between x and 2’. The term C,(Y) in the last inequality follows
from smoothness of the compactness of {0x and O., and the n® term follows
from n > 1, so we can take ¢y =1 and ¢y = a.

For (b), we again appeal to the smoothness of g and convexity of ©,, so that
we can apply mean value theorem to get:

lmn(c,z; Z) — mp (23 2)||
<[[@mn(ct 25 2) f0c"|[le = €|
<CrCXR|DW)|[[*b([v(X —2)]'ch) /0608 |c — |
<nCrC%Cya e — ¢

where ¢f lies between ¢ and ¢/, ¢p can be arbitrary, ¢; = 1. The bounds follow
from our smoothness and compactness assumptions. This completes the proof
for function ().

Next, we check that (i7) satisfies (a) and (b) in Assumption 9 as well. Again,
throughout this part of the proof, || - || is the operator norm when applied to a
matrix and Euclidean norm when applied to a vector. We rely on the fact that
the operator norm is bounded by the Frobenius norm, || - ||r, which gives us

[mn (e, 23 Z) || < [lmn (e, 25 Z)[[e = [[vec[mn (¢, z; Z)]],

where || - || refers to operator norm for matrices and euclidean norm for vectors.
For (a), we assume that h is chosen sufficiently small so that x and 2’ are in a
convex subset of Qx, and apply the mean value theorem by appealing to the
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smoothness of g, K and v. This gives us
(e, s 2) — male,a's 2)|
<||vec[m, (¢, z; Z)] — vec[my, (¢, z'; Z)]||
<[|dvecmn (e, zt; 2)]/0x|||x — 2|
<h2| DY) [PIOTKI(X — ¥ /hlvecv(X — ot)
x Pb(v(X —2t)'¢) /0000 v(X — 2H)} /0| || — 2|
<|hHOK[(X — xt)/h]/ou}vecv(X — xH)[0*b(v(X — ) 'e) /0000 Tv(X — b))
%o — |
+ |IK[(X — 2%)/h]o{vec[v(X — zH)[0*b(v(X — ) '¢) /0000 v(X — x%)"]}/0z"||
X [lz — 2’|
<n*Cyallz — 2/,
where 2t lies between 2 and 2/, and the bound, Cy,2, follow from our smoothness
and compactness assumptions. Then (a) is satisfied with ¢; = 1 and ¢3 = a.
For (b), by the smoothness of g and the convexity of ©., we can apply mean
value theorem to get:
lmn(c,z; Z2) —mn(c,z; 2)| <||vec[mn(c,z; Z)] — vec[m, (¢, z; Z)]||
<[|avecmn(ct,z; 2)]/0c ||| — ||
<P?|D(h™H|PK[(X - 2)/h]|v(X —2) @ v(X —2)
X ||Ovec[0?b([v(X — z)]"c")/0006"]/oc"||||c — ||
<CkCxChalle =<,
where ¢ lies between ¢ and ¢/, so (b) holds with ¢; = 1 and ¢y being arbitrary

since n > 1. This completes the proof for function (i¢), and completes the proof
of the lemma. O

We need the following proposition that shows our choice of bandwidth in
Assumption 8 satisfies the second condition of Lemma S.8.1.

Proposition S.6.1. Let a, = h?t* where h satisfies Assumption 8 and 0 <
k < 4. Then, for s > 2, we have a, } 0 and
ot/ =2y
—— — 00, as n — .
logn
Proof. By Assumption 8, h = en™® for a > 0, and so a,, | 0 as n — oo. To
compute the limit, note that
ai/(s_2)n [(Cnfa)p+k:]s/(8*2)n C(p+k)s/(872)n*()z(p«}k:)S/(S*?)n

logn logn logn
nfa(p+k)s/(572)+1
XX

logn
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For s >2,0 < a <1/pg, and pg > (p+4)s/(s — 2), we get for 0 < k < 4,

(p+k)s o1 (p+k)s

Py 2 T k-2

>0,

and so n_o‘(p+k)5/(s_2)+1/ log n is monotonically diverging in n, completing the
proof. O

In particular, Proposition S.6.1 implies that h?*2 and hP+* will satisfy con-
dition 2 of Lemma S.8.1. The following lemma gives the uniform convergence of
S(h,c,z) and 925(h,c,x)D(h)~1L.

Lemma S.6.2. Suppose Assumptions 2,3',4',5" and 6 ~ 9 hold. Then,
(a) sup,cay ceo, IIS(h,¢;x) = S(h,e,2)|| = Ous(Spm),

() subyeqy ceo, 1025 (hsc,x)D(h) ™" = 828 (h, ¢, ) D(h) ™! || = Oas(Spn) -
Proof. (a). We apply Lemma S.8.1 with Z = (X,Y) and

ma(e,5 Z) =hK[(X — ) /WD(h) " "v(X — 2)g(Y.v(X —a)c),

so that S(h, ¢,z) = h~ PtV E, m, (¢, z; Z). We now check the three conditons in
Lemma S.8.1.

For condition (i), we have ||g(y,8)|| < Mi(y), by smoothness of g and com-
pactness of ©. Furthermore, E{M;(Y)*'} < oo for some s; > 2 by Assumption
3'. Therefore,

[mn (e, 2; Z)|| <hK[(X —2)/R)||D(h) ~HIIV[(X — 2)]|lg(Y, »(X — ) ¢)]|
<CgCxM(Y),

where Cx and Cx bounds the kernel and ||v(X —x)|| respectively, and || D(h) ™|
h~1 since h € (0,1). Since the bounds are free of # and x, taking the supremum
implies condition (7).
For condition (ii) of Lemma S.8.1, we have
02 =|E[my(c,z; Z) 'mp(c,z; 2)]|
=|ERE((X — 2)/h?g(Y,v(X — 2)'¢) v[(X — 2)/h]V[(X — z)/h]
x g(Y, (X —z)'c)]

<CrchP*? / K () g (g, (b)) o () () g (g, v () )

f(z + hu,y)dudy

<CghPt? sup / K(u)|g(y, v(hu)'c) v(u) v(u)g(y, v(hu)c)

c€O.,h€0,1],2z€Qx

x f(x + hu,y)dudy
<O(h"*?),
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where the boundedness follows from part (4) of Assumption 7. Similarly,

o3 =|E[mn(c,z; Z)mu(c,z; Z)1]|
<|ER*K[(X — z)/h*v[(X —2)/hlg(Y,v(X — ) e)g(YV,v(X —z)'¢)"
x V[(X — ) /]|

<CyhP+? / K (u)

V(g (y, v(h) gy, u(hufc)w(u)THf(x T huy)dudy

<Ok sup / K ()| | (w)g (9, v (ha) ) (g, v (has) ) v (ar)

c€O.,h€[0,1],2€Qx
x f(x + hu,y)dudy
<O(hPT2).

Hence, 02 = max{o?,03} = Oas(hP*?). The second part of condition (ii) re-
garding a, = hP*2 holds by Proposition S.6.1. Condition (iii) follows directly
from Assumption 9.

Then, by Lemma S.8.1 and Corollary S.8.2, we have

sup || Epmn(c, 25 Z) — Emy(c, 5 Z)|| = WP 20us(8(p12)n)-
r€EQx,cEO,
Since d(p42)n = h=18,p, we have hp+25(p+2)h = hPt16,,. Plugging E,m,(c,z; Z) =
h?t18(h, ¢, ) and Emy (¢, x; Z) = hPt1S(h, ¢, z) into the supremum above, we
have

sup  [|9(h, ¢, ) = S(h, ¢, )| = Ous(Gpn),
r€Qx,cEOQ,

which completes the proof of (a).
(b). We apply Lemma S.8.1 with Z = (X,Y") and

my(c,2; Z) =h*K[(X — 2)/hv[(X — )/h)0ag(Y,v(X — 2) c)v[(X —x)/h],

so that 95(h,c,2)D(h)~* = =Pt E, m,(c,x; Z). We now check the three
conditions in Lemma S.8.1.

For condition (i), ||029(Y,0)|| = Ma(y), where E[M2(Y)%?] < oo for some
s9 > 2 by Assumption 3'. Therefore,

Imn (e, 2 2)| <h?K[(X — 2)/h]||v[(X = 2)][P[D(A) " [*1929(Y, v(X — 2)"c)|
where Cx and Cx bounds the kernel and ||v(X — z)| respectively, and the

operator norm of ||[D(h)~!(|? is just h=2 since h € (0,1). Since the bounds are
free of 6 and «z, taking supremum implies condition (7).



Quach and Li/Supplementary Material: On Forward Sufficient Dimension Reduction 20

For condition (i7), since my(c,z; Z) is a symmetric matrix, we just need to
compute o7 = 03 = o2. We have

0% = Blmy(c, a3 Z) 'my (e, z; Z)]|
<[IERK[(X = 2)/h*V[(X — 2)/hl029(Y, v(X — ) )v[(X —2)/h]"
x v[(X = 2)/R02g(Y,v(X — ) e)v[(X —2)/]'|
SCthH/K(u) v(u)dag(y, v(hu) c)v(u) v(u)dag(y, v(hu) c)v(u)"
X f(z + huy)dudy

<CghPt* sup / K(u)
c€O.,h€0,1],2€Q x

v(u)dag(y, v(hu) )y (u)"

x v(u)0ag(y, v(hu) e)v(u)|| f(z + hu, y)dudy

=0(h"*),

where the second last inequality follows from part (4) of Assumption 7. The
second part of condition (ii) regarding a, = hP™* holds by Proposition S.6.1.
Condition (ii¢) follows directly from Assumption 9.

Then, by Lemma S.8.1 and Corollary S.8.2, have

sup || Epmn(c, 23 Z) — Emy(c,; Z)|| = B Oas(8(p4ayn)-
€N x ,cEOQ,

Since 6(p+ayn = h™28pn, we have hPT46(, . 4y, = hP+26,,. Plugging
Epmp(c,z;Z) = hP728,8(h, ¢, z)D(h) ™"
and Em,,(c,z;Z) = h?*t20,5(h, c,x)D(h)~! into the supremum above, we have

sup \|82S(h, c, az:)D(h)_1 — 025 (h, ¢, x)D(h)_1|| = O,s(6pn),
€N x,cEO,

which completes the proof of (b). O

The next lemma and corollary gives the uniform convergence of

{028 (h, c,2)D(h)~ 1}~ 1.

Lemma S.6.3. Letn € I, where E is compact and || - ||r denote the Frobenius
norm. Suppose a sequence of random invertible matrices {An(n) :n=1,2,...}
and deterministic invertible matrices {A,(n) : n=1,2,...} satisfy

sup ”An(n) - An(n)”F = Oas(dn);
nek

where dy, — 0 as n — oo, If sup,c g [|An(n) "l = O(1), then

sup HAn(n)_l - An(n)_lHF = Oas(dn).

nek
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Proof. Since sup, ¢ | A (1) = An ()|l = Oas(dy), we have that A, (n) = A, (n)+
D,,, where D,, = O,s(d,,), which is meant entry-wise. Then,

An(n)71 =[An(n) + Dnrl = An(n)71 + An(n)ian[An(n) + Dn]ila

since, for matrices A and D with A invertible, we always have (A+D)~! = A=+
A™'D(A+ D)~'. Because d,, — 0, we have sup, c ; [ [An () + Dy~ [lr = O(1)
and sup, ¢ i | An ()~ !lp = O(1). This gives us

sup HAn(n)_l - An(ﬁ)_lHF

nek
<sup [ An(n) ™ Ip X | Dallp x sup |[An (1) + Dn] ™l
nek nek
:Oas(dn)7
completing the proof. O

Corollary S.6.1. Suppose Assumptions 2,3',4',5" and 6 ~ 9 hold. Then,

Sup_ {025 (hs e, ) D(h) ™'} = {825 (b, ¢, 2) D(R) ™'}l = Oas(Gpn)-
z€llx,ceO,

Proof. We need to verify the conditions in Lemma S.6.3. By Lemma S.6.2, we
have

sup ||82$’(h, c, l‘)D(h)_l — 99S(h, e, x)D(h)_lHF = O,s(dpn),
€N x,cEO,

where 8., — 0. We also have sup,cq, cco, [{925(h,c,z)D(h)"'} g = O(1)
by part (4) of Assumption 7. Then, by Lemma S.6.3, we get

sup [[{025(h, e, 2)D(h) "'} = {825(h, ¢, 2) D(h) ™} & = Oas(6pn),

€N x,c€EO,
completing the proof. O
The following theorem serves as a precursor to Theorem 5.1.

Theorem S.6.1. Suppose Assumptions 2,3',4')5 and 6 ~ 9 hold. Then, as
n — 00, we have

sup [la(h,z) — a(h, )| = Ous(pn),  sup [[B(h,z) = B(h,x)|| = Oas(h™"dpn).

IS95% z€Nx
Proof. A Taylor expansion of S’(h, é(h,x),x) in ¢ about c(h, x) gives us
0 = S(h,é(h,x),x) = S(h,c(h, ), x) + 02S8(h, ', 2)[é(h, 2) — c(h, 2)],

where ||cf — c(h, z)|| < ||é(h, z) — c(h, x)]||. Solving for D(h)[¢(h,x) — c(h, z)], we
have

D(h)[é(h, x) — c(h,z)] = — {828(h, ¢!, 2)D(h) "Y1 S(h, e(h, x), x).
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Taking norm on both sides and observing that E(S(h, ¢(h,z),z)) = S(h, c¢(h, z), z) =
0, we can upper bound the RHS as follows, where || - || refers to operator norm
for matrices and Euclidean otherwise:

[1D(h)[é(h, x) = c(h, z)]|
< sup {925 (h, e, 2)D(h) '}~ sup [|S(h,c,2) — S(hy e @)

ceEO, cE€EO,

where

Ti= sup |{3:8(h,c,z)D(h)~ '}t = {82S(h,c,x)D(h) "1} 71|

T€EQx,cEO,

Ty = sup HS(h,c,x)—-S(h,c,xﬂ|
€N x,cEO,

Ts=  sup  |[{028(h,c,z)D(h)"*} 1.
r€Qx,cEO,

By part 4 of Assumption 7,

T3 < sup
he0,1],cEA,z€Qx

{ /K w)2g(y, v(hu) ) (u) f (@ + hu, y)dydu}1

< 00.

Lemma S.6.2 and Corollary S.6.1 imply Ty = Ous(0pn) and T3 = Oas(dpn).
Plugging in these rates, we get

sup [[D(R)[é(h, x) = (h, )][] =Oas(0ph) Oas(9pn) + O(1)Oas (9pn) = Oas(pn)-

FIS95
Hence the norm of the first m entries of D(h){é(h,x) — c¢(h,x)} satisfy

sup [|a(h, z) = a(h, )[| = Oas(6pn),

x€EQx

and the norm of off the last mp entries of D(h){é(h,z) — c(h,z)} satisfy

sup |[hb(z) — b(h, 2)|| = Oas(dpn) = sup ||b(z) — b(h,z)|| = Ous(h™10,n).

11957 zeQx
Because || - ||r = ||vec(+)|| and the operator norm is upper bounded by the
Frobenius norm, we have the desired result. O

Let B(x) = mat(b(z))" € RP*™ where mat(-) maps a vector to a matrix by
filling the m columns of the matrix from left to right with the p consecutive ele-
ments in the vector. This operation depends on the dimension p of the columns,
but we omit this dependence from the notation as it is usually obvious from the
context. We can now prove Theorem 5.1 as a direct consequence of Theorem
S.6.1.
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Theorem 5.1. Suppose Assumptions 2,3',4',5" and 6 ~ 8 hold. Then, as n —
00, we have

sup H&(ha Z‘) - a(x)” = Oas(h2 + 6ph)7

z€EQx

sup | B(z) — 90(x)/0z||p = Oas(h + h ™ 6,).

rzEQx

Proof. Combine the result from Theorem S.6.1 with Theorem 4.1 to obtain
sup [|a(h, z) = 0(z)|| < sup [la(h,z) —a(h,z)|| + sup [a(h,z) —0(z)|
rEQx €N X €N X
:OaS(h2 + 5ph)a

and

sup || B(h,x) — 96(x)"/0z|

e x
< sup HB(x) — B(h,z)|| + sup ||B(h,x) — 89(x)/8xT||
z€EQx z€EQx

—Oas(h+h™6,,).0

Let B(x) denote the true gradients 90(x)"/dz. Since b(x) is uniformly consis-
tent for vec(d0(x)/8z"), B(h, z) is uniformly consistent for B(x). The candidate
matrix for OPCG is given by A,, = n~! > B(X;)B(X;)". The next theorem
is an augmented version of Theorem 5.2 in the paper (the latter corresponds to
part (b) of the theorem below; to avoid confusion).

Theorem 5.2. Suppose Assumptions 2,3',4’,5" and 6 ~ 8 hold, and let ,), =
(logn/hPn)'/2.

(a) Thden A, =nt > B(X;)B(X;)" consistently estimates A = E{B(x)B(z)"},
an

”An - AH :OaS(h + h_ldph)v

(b) Leti,n e RP*4 be matrices with columns comprised of the first d eigenvec-
tors of A, A respectively. Then

m(f,n) = 177" — || = Oas (h+h™"6pn) .

Proof. (a). By the triangle inequality, we have

1An — All =

n”! Zn: B(X;)B(X;)" — EB(X)B(X)'

<™ Y IB(X,)B(X,) - BX)BX,) |

+ | E.{B(X)B(X)" — EB(X)B(X)"}|.
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We use the uniform consistency in Theorem S.6.1 to bound the first term above
as follows:

IB(X;)B(X;)" — B(X;)B(X;)"|
<I{B(X;) = BXj)HB(X;) = B} + {B(X;) — B(X;)}B(X)'|
+ | BX){B(X;) — B( J}H

_< sup || B(x o)) +2 Sup 1B@)]| sup 1B(z) — B()|

e x
= Ous[{(h+h~ 15ph)}2] O, (h+h 16ph)
= Ous(h+h™ 15ph).

Using Lemma S.8.2 to bound the second term gives

1B, {B(X)B(X)" — EB(X)B(X)"}| = Ous(y/logn/n).

Hence
A, — Al| = Oas(h + ™6, + \/logn/n).
Since h=16,, = y/logn/(h?*+2n), for h € (0,1), h=14,y, is larger than y/logn/n,

so we drop y/logn/n, completing the proof for (a).
(b). Since || - [ls < /il ||, we have [|AR) — Allp < y/BlIA(R) — All = Ogs(h+
h=16,1). By Lemma S.8.3(b), due to [1], we get the final result

d d
197" = 1" <> N — el < liwie — menille = O(h + b= '6,1),
k=1 k=1

kth

where 75 and 7y, are the columus of 7} and 7, respectively. This proves (b). O

7. Plots for Simulations and Applications

In this section, we provide some additional plots to supplement the results re-
ported in the paper: specifically, the predictor augmentation plots used for es-
timating the dimension d of the central mean subspace Yy x), the five-fold
k-means tuning plots for determining the bandwidth, and some plots of the suf-
ficient predictors constructed from test sets. Figure S1 contains the F-ratio plots
for our supervised k-means tuning procedure with different numbers of clusters
per class. Figure S2 plots the prediction augmentation variation [2] against the
dimension d of the central mean subspace. Figure S3 shows classes in the first
two sufficient predictors by six different SDR methods. The central subspace is
estimated using the training set; the plots are based on the test sets. Figures
S1, S2, S3 are the visual support of the results in Table 1 of the paper.

For our applications, Figure S4 provides the predictor augmentation plots
for pendigit and USPS in; Figure S5 provides the F-ratios for tuning pendigit,
USPS, and ISOLET; Figure S6 shows the F-ratio for tuning the wine quality
data; Figure S7 shows the sufficient predictors constructed on the test set for
the wine quality data set.
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k-fold skm F ratio

k-fold skm F ratio

z 2 2
bandwidth, h bandwidih, h bandwidih, h

skm F ratio
sk F ratio
skm F ratio

bandwidth, h bandwidth, h bandwidth, h

Fic S1. F-ratios for our supervised k-means tuning procedure in simulations. The plots on
top are 5-fold supervised k-means on the training set, and the plots on bottom are supervised

k-means on a wvalidation set. From left to right, the number of clusters per class is set to
1,2,3.

augemntation variation

0 2 4 6 8
dimension

Fia S2. The estimated dimension of Sgy|x) for our simulations. The Predictor Augmen-

tation plot estimates d=2.
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Fi1c S3. Sufficient Predictors on the test set in simulations. Red is class 1; blue is 2; and
green is 3.

‘augemntation variation
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FiGc S4. From left to right: Predictor Augmentation plot for pendigit and USPS.

8. Background Theorems and Lemmas

In this section, we provide some preliminary theorems and lemmas used in
previous sections. Some of these results are known, and we provide their proofs
here for completeness.

8.1. Uniform Consistency for the mean with a parameter and index

The following lemma and proof is adapted from [5, 6].

Lemma S.8.1. Suppose m,(n,Z) € R4*% n = 1,2..., are matriz-valued
functions, where Z is a random wvector, and n is a parameter that ranges over
a compact set E C R, Suppose {Z; :i=1,2,---} is a sequence of i.i.d. copies
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k-fold skm F ratio

k-fold skm F ratio
skm F ratio

00

2
bandwidth, h

(a) pendigit

B
bandwidth, h

(b) USPS

25
bandwidth, h

(c) ISOLET

Fic S5. F-ratio from supervised k-means for tuning the bandwidth.

Fic S6. Wine Quality. F-ratio

OPCG

OPCG 2

k-fold skm F ratio

3
bandwidih, h

from five-fold supervised k-means for tuning the bandwidth.

SIR

Fic S7. Wine Quality. From Left to Right: Sufficient predictors constructed on the test set
using OPCG, OPG, and SIR. Red is category {3,4,5}, blue is category {6}, and green is

category {7,8}.

of Z. Suppose m,, satisfy the following conditions, where || - || denotes operator
norm when referring to matrices and Euclidean norm when referring to vectors:

(i) (Uniform Boundedness) Suppose
sup [lmn (1, Z)|| < M(Z),

nek
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with E{M*(Z)} < oo for some s > 2;
(i) (Uniformly rates of Second Moments) Let

ot = sup | Elmy, (1, 2) ma(n, Z)]|l, 03 = sup || E[ma(n, Z)m(n, 2)']]|-
nek nek
We assume 02 = max(o?,03) < a,, where a, — 0, and
s/(s—2)n
lim inf —~——— = lim inf a2/ =2
n logn n

M >0
logn

(#ii) (Lipschitz in m) For oll n,n € E,
I (1, Z) = ma (0, )| < [ln — n'[|*n*L(Z),

for some c1,¢2 > 0, and L(Z) > 0 with EL(Z) < .

Then,
[a1
E,m,(n,Z) — Emy,(n, Z)H = O < aogn) )
n

Proof. Since E is compact, it can be covered by IV balls of radius r centered at
M, -..,nn. By the triangle inequality,

sup
nek

sup |(n~1 Y [ma(n, Zi) = Emn(n, Zi)] H
nekE i=1

< sup n~! Z[mn(ﬁ, Z;) — Emn(n, Z;)] H
n€UrBr(n) i=1

SEEN |

n

WY [ 20 = o, 0] = Bl 20) = oo 2] |

i=1

+ max sup
n€Br (k)

= max_ R,p1+ max sup R ko2 (S13)
=1,..., N k=1,..., N n€By(nk)

The strategy from this point is to use truncation and Bernstein’s inequality to
determine the rate of the first term in (S13), and use the Lipschitz property to
control the second term in (S13).

First Term of (S13) . Define the following truncations of the random func-

tion my, (ng, Z):
) (i, Z) = m (e, 2)1{|M (Z)| > C},
m (e, Z) = ma(m, 2)1{|M(2)| < C,.},
Eri = m&D (ny, Zi) — EmD (ni, Z5),
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for some constant C),, > 0, which will be made explicit later. This gives us

,max -1 Zmn Mk, Zi) — Emu (i, Z;)
Zm (e Zi) — EmlO) (mi, Z:) + max Z&m
<maX Zm(o) My Z. +max *ZEmSIO)(nk,Z )H + max Zflm
i=1

(S14)

For the last term in (S14), we have | ;| < 2C,, E&; =0, and

1B 6] = E{ 0 (s ZYL{M(Z)] < o} — (s Z)L{|M(2)] < cm]

y [mnmzmuwzn < Cu} = B(ma (., 2)H{|M(2)] < O"})} }H

IN

E{_mn(nk,Z)E(mn(nk,Z»Hmn(nk’Z) Ema (e, 2 ]}H

E{m(n, Z) 'm (e, Z)}| < 0F

1B = E{ (s Z)L{M(Z)] < Co} — (s Z)L{|M(2)] < cz})]

IA

x [mnm,Z)nﬂM(Zn < Oy} = Elmn(ne, 2)1{M(2)] < cm} }

SHE{ |:mn<77k7 Z) — E(my (ns. Z))} [mnmk’ 2) = E(mn (e, Z))]T}

SHE{m’ﬂ(nk> Z)mn(nk7 Z)T}H < U%) .

Hence, by condition (ii),

k—max{

By Bernstein’s inequality for matrices [4, 3], for any &, > 0,

P( nt ng,i > 5n> §P< > n5n>
=1 =1

n2e?
<2(dy +d -
S2(di + dp) exp 207+ (2/3)2C,ne,

gkz

) } < no? < nay,.

ne

2
§2(d1—|—d2)exp{—2a +(2/§)2C € }’
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where the last inequality is independent of k£ and i.

Therefore,
Z P (max > €n>
k

N n
(O Erer-)
k=1 i=1
P(”_l > €k >
i=1
]?XP(TLl ; 1€kl > 5n>

> ne2
2 N - n .
(di +d2) Y Nexp { San + (4/3)Cren }

n=1

n
n! ngz
i=1

IN

Mz

-
Il

1

27
i

In particular, if we select &,, and C,, such that C,&, < a,, and ne2 < a,, logn,
say Cpen = bia, and ne? = boay, logn for by,by > 0, then we have g, =<
(anlogn/n)'/2, C, < (a,n/logn)'/?, and

> ne? > bo
2(dy + da) Z N exp {_2% T3 n%} =2(dy + d2) Z N exp {—2 TS logn}

n=1 n=1

°° __b2
<2(dy +dp) Y Nm >+im,

n=1
As we will see later, we will need N to increase with n with rate
N(n) = nt=2/(q, logn/n)~% )

for constants ¢y, co > 0. So, if we choose by, by > 0 large enough so that

b

N(n)n 23 <n~¢,
for some ¢ > 1, then

i P (mkax

m
-1
n Z@c,i
i=1

By the first Borel-Cantelli Lemma,

P({w max ng H (anlogn/n)1/2} zo) =0,

or equivalently,

> b;/z(an logn/n)1/2> < 0o0.

= as an 1Og n/n)l/Q)

kaz

maX
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For the second term of (S14), we have
1EmE?) (e, Zo)l| <E(mi? (i, Z3)|
=E[|lmn(nk, Z)|1{[M (Z)| = Cn}]
SE[|M(Z)|1{[M(Z)| = Cn}]
=C,, C"VEIM(Z)|Cy UM (Z:)| = Cn}
<CyCTVEIM(Z) {|M(Z:)] = Cn}
<Gy EIM(Z))

where E|M(Z;)|® < oo for s > 2 by condition (ii). This implies

max
k

nt ZEmgO)(nk7Zi)“ <n 'Y CLTE|M(Z)|* = CLEIM(Z)).

So we need to show C}~% = O(g,,). But since C,, < (a,n/logn)'/?, we have

Ci=s  (ayn/logn)1=/2  [(a,n/logn)1=* Yz
en  (aplogn/n)l/2 | (a,logn/n)
The RHS without the square root is
a1~ n(1=9) /(log n)(1=2) B all=) pp(1—s) L m N ars/ @9, 2=
anlogn/n _anlogn(logn)(l—s) o <1ogn) o logn

2
B a;i/(S_Q)n
- logn

as/ =Dy,
“ogn— > 0 by condition (ii), the RHS is bounded

above. Therefore, C}~% = O(g,,), and consequently,

Since s > 2, and liminf,

max ZEm (M, Zi)|| = O((an logn/n)'/?).
For the first term in (S14), we have
n
W Y 20| <n 12 I, Z) U M(Z)] > C)
i=1

<C,”* _1Z|M IWL{|M(Z;)| = Cn}

<Cren Y Mz
i=1
Taking the maximum over k£ gives us

maX n-

W 20 H <Ot IM(Z:))° = Ous((anlogn/n)*/?),
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where the last inequality follows from the strong law of large numbers.
Second Term of (S13). By condition (ii), for any k¥ = 1,..., N and any
n € B.(nx), we have

n~! Z {[mn(n, Zi) = mn (s Zi)] = Elma (0, Zi) — ma (1, ZM}H

_1ZEHmn na mn(anZi)

mn(n, Zi) — mpn (i, Z;

‘IDL )] x [ln — nk||01n02+n‘1ZElL (Z0)] % |ln = ]| 2
=1

<rin *IDL )|+ E|L(Z)].
Hence

max  sup Ry o <r“n® [ |L(Z;)| + E|L(Z)]],
kzl""’N’fleBr(nk) Z

where the strong law ensures the sum converges almost surely to E|L(Z)|.
So we just need to pick 7 so that r“'n°* < (a,logn/n)'/?, which gives r =
n=°/% (a, logn/n)'/(?¢1) With r thus determined, the number of balls needed
to cover E satisfies N(n)r? < V, V being the true volume of E. Hence

N(n) = n=2/ (a, logn/n)~ 2,

which we used earlier. Putting together all the results, we conclude that

n1 Z[mn(n, Z;) — Emy, (), Zl)]H < max Rnr1+max sup Ryie

sup

nek i=1 The K neBr(nk)
=04s((an logn/n)t/?),

completing the proof. O

The next Corollary shows the Lipschitz condition in Lemma S.8.1 can be
replaced by a component-wise Lipschitz condition.

Corollary S.8.1. Letn = (0,z) € E = O xQx. Then condition (iii) in Lemma
(S.8.1) can be replaced by the following conditions

(i) (Lipschitz for x € Qx ) For all z,2' € Qx and 6 € O,
[ (0, 2, Z) — mn (0,2, Z)|| < |lz — 2| n L1(Z),

for some c¢1,co > 0, with EL1(Z) < oo;
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(i) (Lipschitz for € ©) For all 6,0’ € © and z € Qx,
Imn (0,2, Z) = ma (0,2, Z)|| < |0 — 0|02 La(Z),

for some ¢y, chy > 0, with EL2(Z) < 0o .

Proof. We just need to show that the two conditions are sufficient for bounding
the second term in (S13). By the triangle inequality,

Rz < 07 3 {0 20) = 0, 20] = Bl 2) = . 201} H
=1
<Y ma(n, Zi) = ma (g, Z)| 07" Ellma(n, Zi) — ma(nk, Zi)|)-
i=1 i=1

By Lipschitz in 0 and x, we get

M (0, Zi) — mn (nk, Z) |
=|mn(0,x,Z;) — mu Ok, i, Z;) ||
<llmn (0,2, Zi) = ma (O, 2, Zi) | + [|mn Ok, T, Zi) — min Ok, Tk, Zi) |
+ [|mn (O, Ty Zi) — M (0, 2k, Zi) || + [|mn (0, Ty Z;) — M (O, 2, Z5) ||
<[|0 = 04| n 2 La(Z) + [l& — k]| n L1 (Z) + 1|6 — 04| In Ly(Z)
+ ||l — k|| nL1(2)
<212 Ly(Z) + 20 n? Ly (Z),

where the last inequality follows from || — ng|| < r, which implies ||z — x| <7
and [|0 — 0i|| < r. So

max  sup Rpko <2rCinc: [n‘l Ly (Z;) + E|L2(Z)|]

+ 2retn? |:7”L1 Z Ll(Zi) + ELl(Z):| .
i=1

The strong law of large numbers ensures the averages converge almost surely
finite constants. So we need to pick r such that r“2n® =< e, and r“in® < g,.
Without loss of generality, assume r‘in® < r°n. Then

max sup Ry ke
k=1,.sN neB,.(n1)

<areine {n S La(Z0)] + ElLa(Z)] + 0 3 I L(Z0) | + EILy(2) .
i=1 i=1
We then set 7 =< n=/(a, logn/n)"/ () and N =< nd=2/(a, logn/n)~ /(1)
, as we did originally in the Lemma, where V' is the volume of F. This completes
the proof. O
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The next corollary provides a convergence rate that is uniform in one com-
ponent of 7, but pointwise in the other.

Corollary S.8.2. Letn = (0,2) € E = 0O x Qx and replace condition (iii) in
Lemma S.8.1 with condition (ii) in Corollary S.8.1. Then

By (0,7, Z) — Emy (0, , Z)H 0. (\/W) |
n

Proof. Let m,(0,Z) = m,(0,z,7Z). Applying Lemma S.8.1 to m,, gives us the
result. O

sup
0cO

8.2. Convergence Rates for Sums of Bounded Outer Products

Lemma S.8.2. Suppose Xi,..., X, are i.i.d, random wvectors in RP. Let g :
RP — R4 >4z be q continuous function such that ||g(X;)|| < K almost surely, in
operator norm, for all i. Let p = E{g(X)g(X)"}. Then,

(1)

; é{g(xng(w -] = 02

(ii)

S ] o (2.

n

Proof. Let Z; = g(X;)g(X;)" — p so that ||Z;|| < 2K? almost surely, E(Z;) =0,
and var(Z;) has finite entries. For (i), it suffices to show that, for any fixed £ > 0,
there is a sequence ¢, =< n~1/2 such that

1
P( - zz: Z;
By Matrix Chebyshev’s inequality [4, 3],
P( 1227; > cn> < 212EH >z
n 4 n2c2 -
So, choosing ¢, = {E(|| Z1]|?)}/?(ne)~/? gives

1 E(|ZP\"? 1
P f§ Z;l| > [ /=12 / , Vn,
( o i _( n <e n

€
which proves (i).

> cn> <e, Vn.

S|
< —FE|Z?.
S e [ Z1]]
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For (ii), we appeal to Bernstein’s Inequality for Matrices and the first Borel-
Cantelli Lemma. Since || Z;|| < 2K2, we have

> _E(Z)

i=1

< Ellg(Xi)g(X:) 9(Xi)g(X) || < nEk*.

By the matrix version of Bernstein’s inequality [4, 3], we have, for any ¢ > 0,

P( ;Z

2
2
> c\/nlogn) <2(p+1)expq —logn c’/

1 /1 )
K4+§K26 OTgLn

=2(p+ 1)n"¢
where d,, = Miiclogn for n = 1,2,.... Note that dy < d,, T d, where
R
2
do = 2K4i231f;c and d = 55

>or(|

So we need to choose ¢ so that the series on the right converges. This can be
achieved by choosing

2 2K 1+ /AK2 & 72e02

L 0<3Ve —2Kc—6yeo? = ¢> ot  T2e0”
2 2Kc

20 —‘1‘37\/5 6\/@

>c\/n10gn> <2(p+1) Zn "<2p+1 Z
n=1 n=1

1<

Then the first Borel-Cantelli Lemma then gives us || )", Zi|| = Oas(v/nlogn),
which is equivalent to (ii).
0

8.3. Bai, Miao, and Rao’s Lemma

This Lemma is from [1]. In the following, let O(c) denote a number whose
absolute value is bounded by Mec, or a matrix whose entries have absolute
values bounded by Me¢, where M is any constant independent of c. Let O(c¥)
be similarly defined. Note that O(c)O(c) = O(c?), whether O(c) is a number or

a matrix.

Lemma S.8.3. Let A = (a;;) and B = (by) be two symmetric p X p matrices
with spectral decomposition

A:

NE

Spuptly, 01 >0y > > Op,

>
Il

1

)\kU]g'U-];, )‘1 > )\2 > 2 )‘p7

i
M-

=
Il
—
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where Ok, A\, and uy, vg are the eigenvalues and corresponding orthonormal eigen-
vectors of A and B, respectively. Suppose there are s distinct eigenvalues, de-
noted by )\1 > )\2 > e > /\S, where each )\h has multiplicity mp. Let np =
my+---+myp, so that 0 <ny <---<np =p. Set ng =0.

If |aik —big| < ¢ foralli,k =1,...,p, then there exist constants My, My > 0,
independent of ¢, such that

(i) 10 — M| < Mic, k=1,2,....p (i.e. 6 = A\ + O(c)), and

(i) if CM) = (cl(,c ) is the p X p matriz defined by

23 nh
h T T
o = E URUy, — E VgV,
k=np_1+1 k=np_1+1

then |cl(Z)| < Msc for allk,l=1,...,pand h=1,...,s

Intuitively, this lemma says that the differences between the eigenvalues and
eigenvectors of two matrices are of the same order of magnitude as the differences
of the entries of the two matrices.

Proof. (i). By Von-Neumann’s Trace Inequality, [tr(AB)| < >°F_| 6;A;, we have

Zp:(s-A 262—1—2)\2—226)\
i=1

< tr(A2 + 32 - 2AB)
= tr{(A - B)(A - B)}

=Y (aij — biy)® = p°c?,
i

which implies (6; — \;)? < p?c?, proving (i) with M; being p.
(ii). By assertion (i),

A= Zéulu—ZA +O()um—2/\ulu +O(e Zx\hZuu + O(o),
=1

i=1 h=1 i€L

where L, = {np—1 + 1,...,n,}. Then, from boundedness assumption A =
B+ O(c), we get

ZAhZulu +0(c)=A=B+0(c ZAthlv + O(c

h=1 i€Lp h=1 i€Lp

Let Pp(A) = 3., win; and Py(B) = 37, ; vwv;. Then the above equation
can be written as 7 _ A Pu(A) = 325, M Pu(B ) + O(c).
We next use mathematical induction to prove (ii). If s = 1, then

AMPi(A) = M\ P (B) + O(c) = Py(A) = Py(B) + O(c),



Quach and Li/Supplementary Material: On Forward Sufficient Dimension Reduction 37

so (ii) holds for s = 1. Assume, for induction, that (ii) holds for s = ¢ — 1; that
is, Pn(A) = Pp(B)+ O(c), for all h =1,...,t — 1. Then

ti M Pi(A) = thPh(B) +0()
:»ZAhPh /\t:;jph ):tixhph(B),;tiph(AHo(C)
:iildh — ) Pi(4) = ::X Py(B (At > Pu(B) > +0(c)
= ;2_:11(5% — M) Pu(A) = ;_11(5\11 — M) Pu(B) + O(c).

Hence, for any v € P,(B), which is orthogonal to P;(B), ..., P,_1(B), we have

S (= )Pa(A)o = 30 = 3 Pu(B)o +0(e) = 3 (i — A) Pul(A)o = O(0).
h=1 h=1 h=1

Since A, — Ay > 0 for all h = 1, .., 5, we have P,(A)v = O(c) for all v € P,(B),
which means (P, (A), P,(B)) = O(c), for h = 1, ...,t—1, where the inner product
between matrices S, T of the same dimension is deﬁned as (S,T) = tr(ST").
Let U; be an orthonormal basis (ONB) for @} _} P,(A), U2 an ONB for
P,(A), and U = (Up,Us). Similarly, let V; be an ONB for @) Py(B), Vs
an ONB for P(B), and V = (V4,Va2). Then (P,(A), P,(B)) = O(c) implies
that (U, Va) = O(c) and, by symmetry, (V1,Us) = O(c). Furthermore, since
V = (V1,Vs) forms a basis, we can express Us in terms of the bases Vi, V5 as
U =ViGy + WGy, Gy € Rre—1x(ne=nt—1) and Gy € R(ne—ne—1)x(ne—ns-1)
Since U = (Uy, Us) is an ONB for R?, we have UsU, = I, — U, U;. Therefore,

VaUsU3Vs = V3 (I, = UhUS)Va = Vi Va + O()O(e) = Ly, , +O(c?).
Since (V1,Us) = O(c), we also have
O(c) = (V1,U2) = (Vi,ViG1 + VaGa) = I, ,G1 =G,

implying G1 = O(c), and so Uz = V10(c) + VaGa + O(c) = VaGa + O(c). Now
note that
G2Gy = Vo VoGaGyVy Va
= V5 (U2 + 0(0))(Uz + O(c)) Vo
=V, UsUyVa + O(c)
=1Ipn, , +0(c*) +O(c)
=1l n,, +0(c).
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This gives us

Pi(A) = UyUy = VoG2GyV, + O(c) + O(c?)
=Vo(Ip—n, , +O(c))Vy + O(c)
=VaVy +0(c)
= P,(B) + O(c).

By the induction assumption, we conclude that Py(A) = Py(B) + O(c) for
h =1,..,t, completing the proof. O
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